Passive Stiffness of Rat Cardiac Myocytes

1984 ◽  
Vol 106 (1) ◽  
pp. 25-30 ◽  
Author(s):  
A. J. Brady

Intact single cells were isolated from adult rat hearts by enzymatic digestion and suspended in 0.25 mM Ca++ Tyrode’s solution. Quiescent, clearly striated rodlike cells were selected for study of the elastic properties of the cells at various stages of membrane and myofilament extraction. Selected cells were placed in a relaxing solution (pCa + 9, 10 mn EGTA) and then each end gently pulled into the tip of a closely fitting suction micropipette for attachment to a force transducer and length perturbation driver. This procedure was performed in low Ca++ to prevent Ca++ loading of the cell during attachment and at room temperature to prevent chemical skinning of the cell [1]. Stiffness was measured by applying a 5-Hz sinusoidal length perturbation (5 percent L0) to one end of the cell while measuring the induced tension change at the other. The ratio of sinusoidal tension change to applied length change (stiffness) was determined for each cell over a length range of about 1–1.3 L0 before removal of the contractile filaments and up to 3.0 L0 after treatment with 0.6 M KI. The stiffness-length relation was measured first in relaxing solution and then in 0.25 mM Ca++ Tyrode’s. If spontaneous contractions or contracture occurred the cell was rejected. If the cell remained quiescent and relaxed it was treated again with relaxing solution and 1 percent Triton X-100 to remove the membranes. The stiffness-length relation was again measured and then the cell was superfused with 0.47 M KCl/10 mM pyrophosphate solution to remove the myosin filaments. The stiffness-length relation was again determined and the cell finally perfused with 0.6 M KI to remove all the contractile filaments. A rodlike, faintly striated structure remained at this point whose stiffness could still be measured. In cells which remained quiescent during the entire extraction procedure and did not develop contracture the following results were obtained. In the relaxing solution and in 0.25 mM Ca++ the stiffness-length relation was similar to that of rat papillary muscle [2]. When the cell membranes were removed with detergent a transient increase in stiffness sometimes occurred which declined within a few minutes to a level near that in the relaxing solution. With KC1 treatment the stiffness declined variably to about half its control value. Immediately upon treatment of the cell with KI solution the major striation pattern disappeared and stiffness fell dramatically. Also the cell became highly extensible such that is could be reversibly extended in length to 2.5–3 L0 with the faintly striated pattern uniformly following the extension. At 3 L0 the sinusoidally measured stiffness was about equal to that of the intact cell at L0. These data indicate that a significant source of the high resting stiffness of rat heart muscle resides within the muscle cells and is dependent to a large extent on the presence of the myofilaments [3]. Also, a measurable stiffness remains in the cells after contractile filament extraction, which may be attributable to the cytoskeletal intermediate filaments.

2007 ◽  
Vol 293 (2) ◽  
pp. H1254-H1264 ◽  
Author(s):  
Taku Yamamoto ◽  
Takeshi Shirayama ◽  
Tomohiko Sakatani ◽  
Tomosaburo Takahashi ◽  
Hideo Tanaka ◽  
...  

The Na+-HCO3− cotransporter (NBC) plays a key role in intracellular pH (pHi) regulation in normal ventricular muscle. However, the state of NBC in nonischemic hypertrophied hearts is unresolved. In this study, we examined functional and molecular properties of NBC in adult rat ventricular myocytes. The cells were enzymatically isolated from both normal and hypertrophied hearts. Ventricular hypertrophy was induced by pressure overload created by suprarenal abdominal aortic constriction of 50% for 7 wk. pHi was measured in single cells using the fluorescent pH indicator 2′,7′-bis(2-carboxyethyl)5-( 6 )carboxyfluorescein. Real-time PCR analysis was used to quantitatively assess expression of NBC-encoding mRNA, including SLC4A4 (encoding electrogenic NBC, NBCe1) and SLC4A7 (electroneutral NBC, NBCn1). Our results demonstrate that: 1) mRNA levels of both the electrogenic NBCe1 (SLC4A4) and electroneutral NBCn1 (SLC4A7) forms of NBC were increased by aortic constriction, 2) the onset of NBC upregulation occurred within 3 days after constriction, 3) normal and hypertrophied ventricles displayed regional differences in NBC expression, 4) acid extrusion via NBC ( JNBC) was increased significantly in hypertrophied myocytes, 5) although acid extrusion via Na+/H+ exchange was also increased in hypertrophied myocytes, the relative enhancement of JNBC was larger, 6) membrane depolarization markedly increased JNBC in hypertrophied myocytes, and 7) losartan, an ANG II AT1 receptor antagonist, significantly attenuated the upregulation of both NBCs induced by 3 wk of aortic constriction. Enhanced NBC activity during hypertrophic development provides a mechanism for intracellular Na+ overload, which may render the ventricles more vulnerable to Ca2+ overload during ischemia-reperfusion.


1983 ◽  
Vol 219 (1217) ◽  
pp. 447-469 ◽  

The second inward current ( I si ) in single cells isolated from ventricular muscle of adult rat hearts was measured in response to step depolarizations under voltage-clamp conditions. The major ion carrying this current was Ca, and I si was reduced or abolished by Mn, Ni, Cd, nifedipine, nimodipine and D600. Sr and Ba could substitute for Ca as charge carriers, and reduced the rate of apparent inactivation of I si . These effects of Sr and Ba, together with the relation between the steady level of apparent inactivation and membrane potential in Ca containing solution, were taken as evidence that inactivation was at least in part dependent on internal Ca. The reduction of external Na to 11% of normal caused a reduction in peak I si when Ca was present in the external solution, but did not reduce I si when Ca was replaced by Sr. It therefore seems unlikely that Na is a major charge carrier I si under the conditions of our experiments. The time-to-peak and rate of apparent inactivation of I si were faster than in previous studies that used multicellular preparations. Both the kinetics and peak amplitude of I si were markedly dependent on temperature ( Q 10 close to 3). Contraction of the cells, which was monitored optically, was initiated within 3 ms of the peak I si , reached a maximum level after approximately 40–50 ms, and was about 100 ms in duration.


2005 ◽  
Vol 98 (4) ◽  
pp. 1434-1441 ◽  
Author(s):  
Lauren D. Black ◽  
Kelly K. Brewer ◽  
Shirley M. Morris ◽  
Barbara M. Schreiber ◽  
Paul Toselli ◽  
...  

Pulmonary emphysema and vessel wall aneurysms are diseases characterized by elastolytic damage to elastin fibers that leads to mechanical failure. To model this, neonatal rat aortic smooth muscle cells were cultured, accumulating an extracellular matrix rich in elastin, and mechanical measurements were made before and during enzymatic digestion of elastin. Specifically, the cells in the cultures were killed with sodium azide, the cultures were lifted from the flask, cut into small strips, and fixed to a computer-controlled lever arm and a force transducer. The strips were subjected to a broadband displacement signal to study the dynamic mechanical properties of the samples. Also, quasi-static stress-strain curves were measured. The dynamic data were fit to a linear viscoelastic model to estimate the tissues' loss (G) and storage (H) modulus coefficients, which were evaluated before and during 30 min of elastase treatment, at which point a failure test was performed. G and H decreased significantly to 30% of their baseline values after 30 min. The failure stress of control samples was ∼15 times higher than that of the digested samples. Understanding the structure-function relationship of elastin networks and the effects of elastolytic injury on their mechanical properties can lead to the elucidation of the mechanism of elastin fiber failure and evaluation of possible treatments to enhance repair in diseases involving elastolytic injury.


1996 ◽  
Vol 5 (6) ◽  
pp. 599-611 ◽  
Author(s):  
Rosemary A. Fricker ◽  
Roger A. Barker ◽  
James W. Fawcett ◽  
Stephen B. Dunnett

Cell suspension grafts from embryonic striatal primordia placed into the adult rat striatum survive well and are able to alleviate a number of behavioral deficits caused by excitotoxic lesions to this structure. However, neither the anatomical connectivity between the graft and host nor the functional recovery elicited by the grafts is completely restored. One way in which the survival and function of embryonic striatal grafts may be enhanced is by the improvement of techniques for the preparation of the cell suspension prior to implantation, an issue that has been addressed only to a limited extent. We have evaluated a number of parameters during the preparation procedure, looking at the effects on cell survival over the first 24 h from preparation using vital dyes and the numbers of surviving neurons in vitro, after 4 days in culture, in addition to graft survival and function in vivo. Factors influencing cell survival include the type of trypsinization procedure and the age of donor tissues used for suspension preparation. The presence of DNase has no effect on cell viability but aids the dissociation of the tissue to form single cells. These results have important implications for the use of embryonic striatal grafts in animal models of Huntington's disease, and in any future clinical application of this research.


1987 ◽  
Vol 89 (5) ◽  
pp. 771-789 ◽  
Author(s):  
D M Warshaw

The relationship between force and shortening velocity (F:V) in muscle is believed to reflect both the mechanics of the myosin cross-bridge and the kinetics of its interaction with actin. To date, the F:V for smooth muscle cells has been inferred from F:V data obtained in multicellular tissue preparations. Therefore, to determine F:V in an intact single smooth muscle cell, cells were isolated from the toad (Bufo marinus) stomach muscularis and attached to a force transducer and length displacement device. Cells were electrically stimulated at 20 degrees C and generated 143 mN/mm2 of active force per muscle cross-sectional area. At the peak of contraction, cells were subjected to sudden changes in force (dF = 0.10-0.90 Fmax) and then maintained at the new force level. The force change resulted in a length response in which the cell length (Lcell) rapidly decreased during the force step and then decreased monotonically with a time constant between 75 and 600 ms. The initial length change that coincided with the force step was analyzed and an active cellular compliance of 1.9% cell length was estimated. The maintained force and resultant shortening velocity (V) were fitted to the Hill hyperbola with constants a/Fmax of 0.268 and b of 0.163 Lcell/s. Vmax was also determined by a procedure in which the cell length was slackened and the time of unloaded shortening was recorded (slack test). From the slack test, Vmax was estimated as 0.583 Lcell/s, in agreement with the F:V data. The F:V data were analyzed within the framework of the Huxley model (Huxley. 1957. Progress in Biophysics and Biophysical Chemistry. 7:255-318) for contraction and interpreted to indicate that in smooth muscle, as compared with fast striated muscle, there may exist a greater percentage of attached force-generating cross-bridges.


2005 ◽  
Vol 33 (05) ◽  
pp. 797-806 ◽  
Author(s):  
Jin Tao ◽  
Hongyi Wang ◽  
Jiandong Chen ◽  
Huae Xu ◽  
Shengnan Li

The saponin monomer 13 of dwarf lilyturf tuber (DT-13), one of the saponin monomers of dwarf lilyturf tuber, has been found to have potent cardioprotective effects. In order to investigate the effect of DT-13 on L-type calcium currents ( I Ca,L ), exploring the mechanisms of DT-13's cardioprotective effects, we directly measured the I Ca,L in the adult rat cardiac myocytes exposed to DT-13 using standard whole-cell patch-clamp recording technique. Our results showed that DT-13 exerted inhibitory effects on the I Ca,L of the single adult rat cardiac myocytes. The current density was reduced by about 38% after exposure of the cells to DT-13 (0.1 μM) for 10 minutes, from the control value of 7.46 ± 1.31 pA/pF to 4.25 ± 0.35 pA/pF ( n = 6, p < 0.05). This I Ca,L -inhibiting action of DT-13 was concentration-dependent. DT-13 up-shifted the current-voltage (I-V) curve, but did not significantly affect the half activation potential (V0.5). V0.5 was from -11.8 ± 0.9 mV in the control to -12.6 ± 1.9 mV in the presence of DT-13 at 0.1 μmol/L. DT-13 at 0.1 μM did not markedly affect the activation of I Ca,L , but shifted the inactivation curve of I Ca,L to the left. In combination with previous reports, these results suggest that there might be a close relationship between the cardioprotective effects of dwarf lilyturf tuber and the inhibitory effects of DT-13 on L-type calcium currents.


2009 ◽  
Vol 296 (5) ◽  
pp. H1524-H1531 ◽  
Author(s):  
Laurin M. Hanft ◽  
Kerry S. McDonald

The Frank-Starling relationship of the heart yields increased stroke volume with greater end-diastolic volume, and this relationship is steeper after β-adrenergic stimulation. The underlying basis for the Frank-Starling mechanism involves length-dependent changes in both Ca2+ sensitivity of myofibrillar force and power output. In this study, we tested the hypothesis that PKA-induced phosphorylation of myofibrillar proteins would increase the length dependence of myofibrillar power output, which would provide a myofibrillar basis to, in part, explain the steeper Frank-Starling relations after β-adrenergic stimulation. For these experiments, adult rat left ventricles were mechanically disrupted, permeabilized cardiac myocyte preparations were attached between a force transducer and position motor, and the length dependence of loaded shortening and power output were measured before and after treatment with PKA. PKA increased the phosphorylation of myosin binding protein C and cardiac troponin I, as assessed by autoradiography. In terms of myocyte mechanics, PKA decreased the Ca2+ sensitivity of force and increased loaded shortening and power output at all relative loads when the myocyte preparations were at long sarcomere length (∼2.30 μm). PKA had less of an effect on loaded shortening and power output at short sarcomere length (∼2.0 μm). These changes resulted in a greater length dependence of myocyte power output after PKA treatment; peak normalized power output increased ∼20% with length before PKA and ∼40% after PKA. These results suggest that PKA-induced phosphorylation of myofibrillar proteins explains, in part, the steeper ventricular function curves (i.e., Frank-Starling relationship) after β-adrenergic stimulation of the left ventricle.


2001 ◽  
Vol 91 (2) ◽  
pp. 632-636 ◽  
Author(s):  
Richard A. Howlett ◽  
Michael C. Hogan

There is currently some controversy regarding the manner in which skeletal muscle intracellular Po 2changes with work intensity. Therefore, this study investigated the relationship between intracellular Po 2 and stimulation frequency in intact, isolated, single skeletal muscle fibers. Single, living muscle fibers ( n = 7) were microdissected from the lumbrical muscles of Xenopus and injected with the oxygen-sensitive probe palladium-meso-tetra(4-carboxyphenyl)porphine (0.5 mM). Fibers were mounted with platinum clips to a force transducer in a chamber, which was continuously perfused with Ringer solution (pH = 7.0) at a Po 2 of ∼30 Torr. Fibers were then stimulated sequentially for 3 min, followed by a 3-min rest, at each of five contraction frequencies (0.15, 0.2, 0.25, 0.33, and 0.5 Hz), in a random order, using tetanic contractions. Resting intracellular Po 2 averaged 31.2 ± 0.9 Torr. During steady-state stimulation, intracellular Po 2declined to 21.2 ± 2.3, 17.1 ± 2.4, 15.3 ± 1.9, 9.8 ± 2.0, and 5.8 ± 1.4 Torr for 0.15, 0.2, 0.25, 0.33, and 0.5-Hz stimulation, respectively. Significant fatigue, as defined by a decrease in force to <50% of the initial force, occurred only at the highest (0.5 Hz) stimulation frequency in five of the cells and at 0.33 Hz in the other two. Regression analysis demonstrated that there was a significant ( P < 0.0001, r = 0.82) negative correlation between intracellular Po 2 and contraction frequency in these isolated, single cells. The linear decrease in intracellular Po 2 with stimulation frequency, and thus energy demand, suggests that a fall in intracellular Po 2 correlates with increased oxygen uptake in these single contracting cells.


Sign in / Sign up

Export Citation Format

Share Document