Asymmetric Contact Problem Including Wear for Nonhomogeneous Half Space

1982 ◽  
Vol 49 (1) ◽  
pp. 43-46 ◽  
Author(s):  
T. S. Sankar ◽  
V. Fabrikant

Contact problem with wear for asymmetric rigid die acting on a half space whose elastic modulus is a power function of depth is considered for the case when the die is rotating according to an arbitrary law. Zone of contact is taken to be a circle, and the wear is proportional to the work done by the tangential stresses obeying Coloumb’s law. Integral equation of the problem is derived and an exact solution of the equation is obtained in closed form. The case of inclined flat die is discussed as an illustrative example of the general method of solution that is proposed.

1987 ◽  
Vol 109 (4) ◽  
pp. 630-633
Author(s):  
D. A. Hills ◽  
A. Sackfield

A general method is described for deducing the stresses induced in a half-space by an axisymmetric pressure distribution applied over a small area of the surface. The technique is illustrated by re-evaluating the solution to Hertz’ contact problem, and deducing the stresses induced in a fourth-order contacting pair.


1971 ◽  
Vol 38 (3) ◽  
pp. 608-614 ◽  
Author(s):  
Y. C. Pao ◽  
Ting-Shu Wu ◽  
Y. P. Chiu

This paper is concerned with the plane-strain problem of an elastic layer supported on a half-space foundation and indented by a cylinder. A study is presented of the effect of the contact condition at the layer-foundation interface on the contact stresses of the indented layer. For the general problem of elastic indenter or elastic foundation, the integral equations governing the contact stress distribution of the indented layer derived on the basis of two-dimensional theory of elasticity are given and a numerical method of solution is formulated. The limiting contact conditions at the layer-foundation interface are then investigated by considering two extreme cases, one with the indented layer in frictionless contact with the half space and the other with the indented layer rigidly adhered to the half space. Graphs of the bounds on the maximum normal stress occurring in indented elastic layers for the cases of rigid cylindrical indenter and rigid half-space foundation are obtained for possible practical applications. Some results of the elastic indenter problem are also presented and discussed.


2017 ◽  
Vol 24 (2) ◽  
pp. 448-464 ◽  
Author(s):  
Jie Yan ◽  
Changwen Mi ◽  
Zhixin Liu

In this work, we examine the receding contact between a homogeneous elastic layer and a half-plane substrate reinforced by a functionally graded coating. The material properties of the coating are allowed to vary exponentially along its thickness. A distributed traction load applied over a finite segment of the layer surface presses the layer and the coated substrate against each other. It is further assumed that the receding contact between the layer and the coated substrate is frictionless. In the absence of body forces, Fourier integral transforms are used to convert the governing equations and boundary conditions of the plane receding contact problem into a singular integral equation with the contact pressure and contact size as unknowns. Gauss–Chebyshev quadrature is subsequently employed to discretize both the singular integral equation and the force equilibrium condition at the contact interface. An iterative algorithm based on the method of steepest descent has been proposed to numerically solve the system of algebraic equations, which is linear for the contact pressure but nonlinear for the contact size. Extensive case studies are performed with respect to the coating inhomogeneity parameter, geometric parameters, material properties, and the extent of the indentation load. As a result of the indentation, the elastic layer remains in contact with the coated substrate over only a finite interval. Exterior to this region, the layer and the coated substrate lose contact. Nonetheless, the receding contact size is always larger than that of the indentation traction. To validate the theoretical solution, we have also developed a finite-element model to solve the same receding contact problem. Numerical results of finite-element modeling and theoretical development are compared in detail for a number of parametric studies and are found to agree very well with each other.


1969 ◽  
Vol 36 (3) ◽  
pp. 505-515 ◽  
Author(s):  
D. C. Gakenheimer ◽  
J. Miklowitz

The propagation of transient waves in a homogeneous, isotropic, linearly elastic half space excited by a traveling normal point load is investigated. The load is suddenly applied and then it moves rectilinearly at a constant speed along the free surface. The displacements are derived for the interior of the half space and for all load speeds. Wave-front expansions are obtained from the exact solution, in addition to results pertaining to the steady-state displacement field. The limit case of zero load speed is considered, yielding new results for Lamb’s point load problem.


Sign in / Sign up

Export Citation Format

Share Document