Closed Form Expression for the Vibration Problem of a Transversely Isotropic Magneto-Electro-Elastic Plate

2009 ◽  
Vol 77 (2) ◽  
Author(s):  
Mei-Feng Liu ◽  
Tai-Ping Chang

A closed form expression for the transverse vibration of a magnetoelectroelastic (MEE) thin plate is derived, and the exact solution for the free vibration of a two-layered BaTiO3–CoFe2O4 composite is obtained. Based on the Kirchhoff thin plate theory, the bending problem of a transversely isotropic MEE rectangular plate is investigated, and the governing equation in terms of the transverse displacement is then presented in a rather compact form. The material coefficients for such MEE plate are expressed uniquely by the volume fraction (vf) of the two-layered BaTiO3–CoFe2O4 composite, which indicates a transversely isotropic MEE medium. The natural frequencies of such MEE plate are evaluated analytically, and the effects of different volume fractions on the natural frequency are further discussed.

2006 ◽  
Vol 306-308 ◽  
pp. 775-780
Author(s):  
Tung Yang Chen

Effective thermal conductivities of composites consisting of curvilinearly anisotropic inclusions with Kapitza thermal contact resistance between the constituents are considered. We show that the effect of these curvilinearly anisotropic inclusions can be exactly simulated by certain equivalent isotropic or transversely isotropic inclusions. Three different micromechanical models are employed to estimate the effective thermal conductivity of the composite. Interestingly, all these methods result in the same simple, closed-form expression.


Author(s):  
A R Saidi ◽  
A Naderi ◽  
E Jomehzadeh

In this article, a closed-form solution for bending/stretching analysis of functionally graded (FG) circular plates under asymmetric loads is presented. It is assumed that the material properties of the FG plate are described by a power function of the thickness variable. The equilibrium equations are derived according to the classical plate theory using the principle of total potential energy. Two new functions are introduced to decouple the governing equilibrium equations. The three highly coupled partial differential equations are then converted into an independent equation in terms of transverse displacement. A closed-form solution for deflection of FG circular plates under arbitrary lateral eccentric concentrated force is obtained by defining a new coordinate system. This solution can be used as a Green function to obtain the closed-form solution of the FG plate under arbitrary loadings. Also, the solution is employed to solve some different asymmetric problems. Finally, the stress and displacement components are obtained exactly for each problem and the effect of volume fraction is also studied.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yassine Zouaoui ◽  
Larbi Talbi ◽  
Khelifa Hettak ◽  
Naresh K. Darimireddy

Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

AbstractIn this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonometric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for further developments in the same topic.


2021 ◽  
Vol 48 (3) ◽  
pp. 91-96
Author(s):  
Shigeo Shioda

The consensus achieved in the consensus-forming algorithm is not generally a constant but rather a random variable, even if the initial opinions are the same. In the present paper, we investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm. We focus on two extreme cases: consensus forming by two agents and consensus forming by an infinite number of agents. In the two-agent case, we derive several properties of the distribution function of the consensus. In the infinite-numberof- agents case, we show that if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution. In addition, we derive a closed-form expression of the probability density function of the consensus when the initial opinions follow a Gaussian distribution, a Cauchy distribution, or a L´evy distribution.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


Sign in / Sign up

Export Citation Format

Share Document