An Approximate Analysis of Foundation Stresses in Horizontal Pressure Vessels

1980 ◽  
Vol 102 (3) ◽  
pp. 555-557
Author(s):  
Krishna P. Singh ◽  
V. K. Luk

Saddle supports of horizontally mounted pressure vessels, when subject to seismic and mechanical loads, interact with the foundation in a highly non-linear manner. The maximum foundation concrete pressure, and hold-down bolt stresses are important design considerations which often govern the vessel support geometry. A method is given herein to determine the foundation stresses due to arbitrary imposed loadings. The solution procedure lends itself easily to automated computation—a highly desirable feature—since most nuclear equipment has to be analyzed for a large number of loading conditions.

2014 ◽  
Vol 592-594 ◽  
pp. 1220-1224
Author(s):  
Navin Kumar ◽  
Surjit Angra ◽  
Vinod Kumar Mittal

Saddles are used to support the horizontal pressure vessels such as boiler drums or tanks. Since saddle is an integral part of the vessel, it should be designed in such a way that it can withstand the pressure vessel load while carrying liquid along with the operating weight. This paper presents the stress analysis of saddle support of a horizontal pressure vessel. A model of horizontal pressure vessel and saddle is created in Ansys software. For the given boundry and loading conditions, stresses induced in the saddle support are analyzed using Ansys software. After analysis it is found that maximum localized stress arises at the saddle to vessel interface near the saddle horn area. The results obtained shows that the saddle support design is safe for the given loading conditions and provides the theoretical basis for furthur optimisation.


Author(s):  
H. Mahbadi ◽  
M. R. Eslami

In this article cyclic loading of thick cylindrical and spherical vessels under thermal and mechanical loads are investigated. A new and efficient numerical iterative method is proposed and used to analyze the structural behavior under cyclic loading conditions. The results are verified with the known data given in the literature.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2458
Author(s):  
Anu Venkatesh ◽  
Angela Chang ◽  
Emilie A. Green ◽  
Tianna Randall ◽  
Raquel Gallagher ◽  
...  

Interventions that address binge eating and food insecurity are needed. Engaging people with lived experience to understand their needs and preferences could yield important design considerations for such interventions. In this study, people with food insecurity, recurrent binge eating, and obesity completed an interview-based needs assessment to learn facilitators and barriers that they perceive would impact their engagement with a digital intervention for managing binge eating and weight. Twenty adults completed semi-structured interviews. Responses were analyzed using thematic analysis. Three themes emerged. Participants shared considerations that impact their ability to access the intervention (e.g., cost of intervention, cost of technology, accessibility across devices), ability to complete intervention recommendations (e.g., affordable healthy meals, education to help stretch groceries, food vouchers, rides to grocery stores, personalized to budget), and preferred intervention features for education, self-monitoring, personalization, support, and motivation/rewards. Engaging people with lived experiences via user-centered design methods revealed important design considerations for a digital intervention to meet this population’s needs. Future research is needed to test whether a digital intervention that incorporates these recommendations is engaging and effective for people with binge eating and food insecurity. Findings may have relevance to designing digital interventions for other health problems as well.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 982
Author(s):  
Yuh-Chung Hu ◽  
Zen-Yu Chen ◽  
Pei-Zen Chang

Coriolis mass flowmeters are highly customized products involving high-degree fluid-structure coupling dynamics and high-precision manufacture. The typical delay from from order to shipment is at least 4 months. This paper presents some important design considerations through simulation and experiments, so as to provide manufacturers with a more time-efficient product design and manufacture process. This paper aims at simulating the fluid-structure coupling dynamics of a dual U-tube Coriolis mass flowmeter through the COMSOL simulation package. The simulation results are experimentally validated using a dual U-tube CMF manufactured by Yokogawa Co., Ltd. in a TAF certified flow testing factory provided by FineTek Co., Ltd. Some important design considerations are drawn from simulation and experiment. The zero drift will occur when the dual U-tube structure is unbalanced and therefore the dynamic balance is very important in the manufacturing of dual U-tube CMF. The fluid viscosity can be determined from the driving current of the voice coil actuator or the pressure loss between the inlet and outlet of CMF. Finally, the authors develop a simulation application based on COMSOL’s development platform. Users can quickly evaluate their design through by using this application. The present application can significantly shorten product design and manufacturing time.


1998 ◽  
Vol 75 (8) ◽  
pp. 617-623 ◽  
Author(s):  
Alwyn S. Tooth ◽  
John S.T. Cheung ◽  
Heong W. Ng ◽  
Lin S. Ong ◽  
Chithranjan Nadarajah

Climate Law ◽  
2015 ◽  
Vol 5 (2-4) ◽  
pp. 252-294 ◽  
Author(s):  
William C. G. Burns ◽  
Jane A. Flegal

The feckless response of the world community to the mounting threat of climate change has led to a growing interest in climate geoengineering research. In early 2015, the us National Academy of Sciences released two major reports on the topic. While it is notable that both reports recommended some form of public participation to inform research, this article argues that the vagueness of these recommendations could mean that their implementation might not comport with optimal approaches for public deliberation. We outline some options for public deliberation on climate geoengineering and important design considerations.


1973 ◽  
Vol 95 (4) ◽  
pp. 470-476 ◽  
Author(s):  
J. M. Gonzalez-Santalo ◽  
R. T. Lahey

One of the important design considerations in modern water-cooled nuclear reactors is their thermal performance during hypothetical accident situations. However, an accurate analysis of the system thermal-hydraulics is required before the thermal margins can be appraised. In this paper, an analysis based on the method of characteristics has been developed by which the exact solution to flow decay transients in homogeneous two-phase systems can be obtained. The exact solution presented yields the system flow and quality at each point in space and time during an exponential flow decay transient. These parameters can then be combined with an appropriate CHF correlation to predict the occurrence of transient CHF.


Sign in / Sign up

Export Citation Format

Share Document