Closure to “Discussions of ‘A Three-Dimensional Analysis of Thermohydrodynamic Performance of Sector-Shaped, Tilting-Pad Thrust Bearings’” (1983, ASME J. Lubr. Technol., 105, pp. 412–413)

1983 ◽  
Vol 105 (3) ◽  
pp. 413-413
Author(s):  
Kyung Woong Kim ◽  
Masato Tanaka ◽  
Yukio Hori
1983 ◽  
Vol 105 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Kyung Woong Kim ◽  
Masato Tanaka ◽  
Yukio Hori

The thermohydrodynamic performance of the bearing is analyzed, taking into account the three-dimensional variation of lubricant viscosity and density. The effect of pivot position and operating and environmental conditions on the performance is studied. The present analysis is compared with the isoviscous or the two-dimensional analysis, and is found to predict the bearing performance more accurately.


2007 ◽  
Vol 129 (4) ◽  
pp. 895-903 ◽  
Author(s):  
Niels Heinrichson ◽  
Ilmar Ferreira Santos ◽  
Axel Fuerst

This is Part I of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. In Part I a numerical model based on the Reynolds equation is developed extending the three-dimensional thermoelastohydrodynamic (TEHD) analysis of tilting-pad thrust bearings to include the effects of high-pressure injection and recesses in the bearing pads. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. In the analysis, the high-pressure oil injection used for hydrostatic jacking is turned off (i.e., only the effect of the pocket is studied). It is shown that a shallow pocket positively influences the performance of the bearing because it has characteristics similar to those of a Rayleigh-step bearing. In Part II of the paper (Heinrichson, N., Fuerst, A., and Santos, I. F., 2007, ASME J. Tribol., 129(4), pp. 904–912) measurements of pressure profiles and oil film thickness for a test-pad are compared to theoretical results. The analysis of Part II deals both with flow situations, where the high-pressure injection is turned off, as well as with situations where it is turned on for hydrostatic jacking.


Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading edge taper. The measurements are compared to theoretical values obtained using a three dimensional thermoelasto-hydrodynamic (TEHD) numerical model. At low and intermediate loads the theoretical pressure distribution corresponds well to the measured values for both pads although the influence of the pocket is slightly underestimated. At high loads large discrepancies exist for the pad with an injection pocket. It is argued that this is likely to be due to the unevenness of the collar surface. The measured and theoretical values of oil film thickness compare well at low loads. At high loads discrepancies grow to up to 25 %. It is argued that this is due to the accuracy of the measurements.


Author(s):  
Niels Heinrichson ◽  
Ilmar Ferreira Santos ◽  
Axel Fuerst

This is Part I of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. A numerical model based on the Reynolds equation is developed extending the three dimensional thermo-elasto-hydrodynamic (TEHD) analysis of tilting-pad thrust bearings to include the effects of high pressure injection and recesses in the bearing pad. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. It is shown that a shallow pocket positively influences the performance of the bearing as it has characteristics similar to those of a parallel step bearing.


1999 ◽  
Vol 122 (2) ◽  
pp. 412-417 ◽  
Author(s):  
T. Almqvist ◽  
S. B. Glavatskikh ◽  
R. Larsson

The objective of the present research is to verify a THD model of hydrodynamic thrust bearings. The developed model of a pivoted pad bearing, which can tilt both radially and circumferentially, allows for three-dimensional temperature distribution in the oil film and in the pad, as well as two-dimensional temperature variation in the runner. Viscosity and density are treated as functions of both temperature and pressure. Experiments have been performed on a test rig, containing two identical equalizing pivoted pad thrust bearings. Power loss, runner temperature, and pressure profiles as a function of load and rotational speed are compared for both theoretical and experimental investigations. Fairly good agreement has been found when the oil inlet temperature and heat transfer coefficients have been estimated in order to get the same runner temperature in both theory and experiment. [S0742-4787(00)00802-X]


2016 ◽  
Vol 68 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Liming Zhai ◽  
Zhengwei Wang ◽  
Yongyao Luo ◽  
Zhongjie Li

Purpose The purpose of this paper is to analyze lubrication characteristics of a bidirectional thrust bearing in a pumped storage, considering the effect of the thermal elastic deformation of the pad and collar. Design/methodology/approach This study used the fluid–solid interaction (FSI) technique to investigate the lubrication characteristics of a bidirectional thrust bearing for several typical operating conditions. The influences of the operating conditions and the thrust load on the lubrication characteristics were analyzed. Then, various pivot eccentricities were investigated to analyze the effects of the pivot position. Findings It is found that the effect of the radial tilt angle of the collar runner on the oil film is compensated for by the radial tilt of the pad. The central pivot support system is the main factor limiting the loads of bidirectional thrust bearings. Originality/value This paper has preliminarily revealed the lubrication mechanism of bidirectional tilting-pad thrust bearings. A three-dimensional FSI method is suggested to evaluate the thermal–elastic–hydrodynamic deformations of thrust bearings instead of the conventional method, which iteratively solves the Reynolds equation, the energy equation, the heat conduction equation and the elastic equilibrium equation.


1975 ◽  
Vol 97 (4) ◽  
pp. 577-584 ◽  
Author(s):  
A. K. Tieu

The three types of finite width thrust bearings, tilting pad, diaphragm tilting pad and diaphragm stepped pad, are simulated on the PDP-6 computer taking into account thermal effects on the oil film viscosity and the diaphragm deflection. The temperature boundary conditions of the three-dimensional oil film volume are obtained from the experiment described in Part I. The computed load carrying capacities of the three types of thrust bearings are compared with the experimental results, and quite good agreement between theory and experiment is obtained.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Sign in / Sign up

Export Citation Format

Share Document