Variations of the Local Failure Pressure With Depth Through First-Year and Multi-Year Ice

1988 ◽  
Vol 110 (2) ◽  
pp. 159-168 ◽  
Author(s):  
D. Blanchet

Typical vertical distributions of the failure pressure in an ice sheet are presented. The distributions, derived for intermediate strain rates, are a function of many parameters, namely, the salinity, the temperature, the type of ice, the location of the ice pressure area through the ice thickness, the thickness of ice, the density, and the crack and flaw distributions. Two combinations of these parameters lead to “representative” summer and winter vertical ice pressure profiles for 8 and 2-m thick ice floes. The importance of the vertical distribution of the failure pressure inside an ice cover is fundamental for two reasons. The change in the eccentricity of the resultant of the load induces changes in failure mode and load transmission to the structure. This nonuniform distribution will create nonsimultaneous failure and the ice pressure on the structure will not be hydrostatically distributed over a given area.

2014 ◽  
Vol 55 (66) ◽  
pp. 205-212 ◽  
Author(s):  
Peng Lu ◽  
Zhijun Li

AbstractAirborne and spaceborne remote sensing of ice freeboard offers a good method of retrieving ice thickness in the polar oceans. However, its accuracy is highly limited by the factors altering the hydrostatic equilibrium of ice floes, such as snow cover and melt ponds which change the surface loading on the ice volume. In contrast to the abundant studies on snow loads, little attention has been paid to the role of melt ponds, partly owing to the difficulties of freeboard measurements during the melt season. To help fill this gap and provide a basis for possible instruments and algorithms being able to access ice freeboard with melting surface in future, a theoretical model was developed to investigate the uncertainty in ice thickness retrieval due to surface melting. First, the ice thickness was related to the freeboard, snow depth, melt pond size and densities of snow, ice and water, and then a sensitivity analysis was carried out to study the influence of melt pond morphology. The results show that melting ice has a much lower mean thickness than ice without a melting surface, although with the same freeboard because of a loss of floe weight due to melting. During pond evolution, a floe gains weight when ponds deepen on the vertical scale, but loses weight when they widen on the horizontal scale, resulting in increasing mean ice thickness with decreasing pond depth and fraction. Freeboard is found to be the major source of uncertainty in the retrieved thickness of first-year ice (FYI), while it is ice density in the case of multi-year ice (MYI). The ratio of ice draft to freeboard ranges from 3.0 to 6.2 for FYI and 2.0 to 4.1 for MYI, agreeing with field observations during melting seasons.


2001 ◽  
Vol 33 ◽  
pp. 51-60 ◽  
Author(s):  
Martin O. Jeffries ◽  
H. Roy Krouse ◽  
Barbara Hurst-Cushing ◽  
Ted Maksym

AbstractBetween austral late winter 1993 and austral autumn 1998, during five cruises aboard the research vessel Nathaniel B. Palmer, almost 300 m of core was obtained from first-year ice floes in the Ross, Amundsen and Bellingshausen Seas. Analysis of the texture, stratigraphy and stable-isotopic composition of the ice was used to assess the magnitude of the role of flooding and snow-ice formation at the base of the snowpack in the thickening of the ice cover and the thinning of the snow cover. Snow ice occurred in all ice-thickness categories and made a significant contribution to the total ice mass (12−36%) in both autumn and winter. Although the amount of snow ice was often exceeded by the amount of frazil ice and congelation ice, the thickness of individual layers of each ice type indicated that snow ice often made a greater contribution to the thermodynamic thickening of the ice cover than the other ice types. The larger quantities of frazil ice and congelation ice were primarily the result of dynamic thickening. Flooding and snow-ice formation reduced the snow cover to 42−70% of the total snow accumulation depending on time and location. On the basis of this information, ship-based snow-depth estimates were adjusted to estimate the total snow accumulation on different ice-thickness categories.


2006 ◽  
Vol 44 ◽  
pp. 281-287 ◽  
Author(s):  
Shotaro Uto ◽  
Haruhito Shimoda ◽  
Shuki Ushio

AbstractSea-ice observations have been conducted on board icebreaker shirase as a part of the Scientific programs of the Japanese Antarctic Research Expedition. We Summarize these to investigate Spatial and interannual variability of ice thickness and Snow depth of the Summer landfast ice in Lützow-Holm Bay, East Antarctica. Electromagnetic–inductive observations, which have been conducted Since 2000, provide total thickness distributions with high Spatial resolution. A clear discontinuity, which Separates thin first-year ice from thick multi-year ice, was observed in the total thickness distributions in two voyages. Comparison with Satellite images revealed that Such phenomena reflected the past breakup of the landfast ice. Within 20–30km from the Shore, total thickness as well as Snow depth decrease toward the Shore. This is due to the Snowdrift by the Strong northeasterly wind. Video observations of Sea-ice thickness and Snow depth were conducted on 11 voyages Since December 1987. Probability density functions derived from total thickness distributions in each year are categorized into three types: a thin-ice, thick-ice and intermediate type. Such interannual variability primarily depends on the extent and duration of the Successive break-up events.


2009 ◽  
Vol 56 (2-3) ◽  
pp. 73-76 ◽  
Author(s):  
A.C. Palmer ◽  
J.P. Dempsey ◽  
D.M. Masterson

1961 ◽  
Vol 3 (29) ◽  
pp. 873-878
Author(s):  
Charles R. Wilson ◽  
A. P. Crary

The volume of ice that flows annually from the Skelton Glacier on the west side of the Ross Ice Shelf between the Worcester and Royal Society Ranges was determined during 1958–59 traverse operations to be approximately 791 × 106 m.3 or 712 × 106 m.3 water equivalent. Annual accumulation on the Skelton névé field and small cirque glaciers is estimated to be 1,018 × 106 m.3 water equivalent, but this figure can be reduced to 712 × 106 m.3 by assuming that 30 per cent of the expected accumulation in the lower slopes of the glacier is lost to adjacent areas of the Ross Ice Shelf by katabatic winds. It is evident that little or no contribution to the nourishment of the Skelton Glacier comes from the high plateau area of East Antarctica. It is suggested that this condition exists generally in the western Ross Sea and Ross Shelf area, and is responsible for the existence of the present “dry” valleys in the McMurdo Sound area.Some estimates of local ice regime are made at two sites on the glacier where ice thickness and strain rates are known.


2001 ◽  
Vol 33 ◽  
pp. 225-229 ◽  
Author(s):  
R.W. Lindsay

AbstractThe RADARSAT geophysical processor system (RGPS) uses sequential synthetic aperture radar images of Arctic sea ice taken every 3 days to track a large set of Lagrangian points over the winter and spring seasons. The points are the vertices of cells, which are initially square and 10 km on a side, and the changes in the area of these cells due to opening and closing of the ice are used to estimate the fractional area of a set of first-year ice categories. The thickness of each category is estimated by the RGPS from an empirical relationship between ice thickness and the freezing degree-days since the formation of the ice. With a parameterization of the albedo based on the ice thickness, the albedo may be estimated from the first-year ice distribution. We compute the albedo for the first spring processed by the RGPS, the early spring of 1997. The data include most of the Beaufort and Chukchi Seas. We find that the mean albedo is 0.79 with a standard deviation of 0.04, with lower albedo values near the edge of the perennial ice zone. The biggest source of error is likely the assumed rate of snow accumulation on new ice.


2010 ◽  
Vol 4 (4) ◽  
pp. 583-592 ◽  
Author(s):  
L. Kaleschke ◽  
N. Maaß ◽  
C. Haas ◽  
S. Hendricks ◽  
G. Heygster ◽  
...  

Abstract. In preparation for the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, we investigated the potential of L-band (1.4 GHz) radiometry to measure sea-ice thickness. Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research aircraft was equipped with the L-band Radiometer EMIRAD and coordinated with helicopter based electromagnetic induction (EM) ice thickness measurements. We developed a three layer (ocean-ice-atmosphere) dielectric slab model for the calculation of ice thickness from brightness temperature. The dielectric properties depend on the relative brine volume which is a function of the bulk ice salinity and temperature. The model calculations suggest a thickness sensitivity of up to 1.5 m for low-salinity (multi-year or brackish) sea-ice. For Arctic first year ice the modelled thickness sensitivity is less than half a meter. It reduces to a few centimeters for temperatures approaching the melting point. The campaign was conducted under unfavorable melting conditions and the spatial overlap between the L-band and EM-measurements was relatively small. Despite these disadvantageous conditions we demonstrate the possibility to measure the sea-ice thickness with the certain limitation up to 1.5 m. The ice thickness derived from SMOS measurements would be complementary to ESA's CryoSat-2 mission in terms of the error characteristics and the spatiotemporal coverage. The relative error for the SMOS ice thickness retrieval is expected to be not less than about 20%.


2016 ◽  
Vol 10 (3) ◽  
pp. 1161-1179 ◽  
Author(s):  
Alek A. Petty ◽  
Michel C. Tsamados ◽  
Nathan T. Kurtz ◽  
Sinead L. Farrell ◽  
Thomas Newman ◽  
...  

Abstract. We present an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009 to 2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes. The results demonstrate that Arctic sea ice topography exhibits significant spatial variability, mainly driven by the increased surface feature height and volume (per unit area) of the multi-year ice that dominates the Central Arctic region. The multi-year ice topography exhibits greater interannual variability compared to the first-year ice regimes, which dominates the total ice topography variability across both regions. The ice topography also shows a clear coastal dependency, with the feature height and volume increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. A strong correlation between ice topography and ice thickness (from the IceBridge sea ice product) is found, using a square-root relationship. The results allude to the importance of ice deformation variability in the total sea ice mass balance, and provide crucial information regarding the tail of the ice thickness distribution across the western Arctic. Future research priorities associated with this new data set are presented and discussed, especially in relation to calculations of atmospheric form drag.


1985 ◽  
Vol 31 (108) ◽  
pp. 198-200 ◽  
Author(s):  
Niels Reeh ◽  
Niels S. Gundestrup

AbstractThe mass balance of the Greenland ice sheet at Dye 3 is estimated on the basis of observations of ice thickness, accumulation rate, surface velocities, and surface strain-rates. The calculations indicate a rate of increase of surface elevation of 3 cm/year, with 95% confidence limits of −3 cm/year and +9 cm/year. Previous estimates of the mass balance of the Greenland ice sheet by the same method reported large imbalances; these are most probably due to lack of precise data and the use of quantities measured at the surface as representative of depth-averaged quantities. The most reliable observations indicate that the interior regions of the Greenland ice sheet are at present thickening at a rate of a few centimetres per year; a contributing cause for this may be the slow thinning of a bottom layer of relatively soft Wisconsin ice.


Sign in / Sign up

Export Citation Format

Share Document