Optimum Balancing of Combined Shaking Force, Shaking Moment, and Torque Fluctuations in High-Speed Linkages

1984 ◽  
Vol 106 (2) ◽  
pp. 242-251 ◽  
Author(s):  
T. W. Lee ◽  
C. Cheng

This paper presents an analytical and computer-aided procedure on the balancing of high-speed linkages. The method allows for the trade-offs necessary to achieve optimum dynamic response of the linkage in the design stage. These trade-offs involve a balance among the shaking force, the shaking moment, bearing reactions, and input-torque fluctuations by mass distribution of the links or counterweighting the linkage. Analytical mechanics and heuristic optimization techniques have been demonstrated to be useful tools in developing such a trade-off. The first part of this paper concerns the development of an optimality criterion in which an integrated approach is presented using both the Lagrangian and the Newtonian formulations, and consequently, a higher computational efficiency is achieved. Based on this theoretical development, the remainder of the paper focuses on the formulation of an optimization problem for linkage balancing and the solution of the problem by the Heuristic Optimization Technique of Lee and Freudenstein. The theory and computation are illustrated by numerical examples in the case of four-bar linkages.

1983 ◽  
Vol 105 (3) ◽  
pp. 576-584 ◽  
Author(s):  
M. Chew ◽  
F. Freudenstein ◽  
R. W. Longman

The synthesis of the parameters governing the dynamic response of high-speed cam-follower systems ideally involves an integrated approach capable of carrying out the tradeoffs necessary to achieve optimum dynamic response in the design stage. These trade-offs involve a balance between the system characteristics at the output and at the cam-follower interface. In this investigation optimal-control theory has been demonstrated to be a useful tool in developing such a tradeoff. Part 1 describes the development of an optimization criterion while Part 2 describes the application of optimal-control theory to the evaluation of system parameters satisfying the optimization criterion.


Author(s):  
A. K. Dhingra ◽  
S. S. Rao

Abstract A new integrated approach to the design of high speed planar mechanisms is presented. The resulting nonlinear programming formulation combines both the kinematic and dynamic synthesis aspects of mechanism design. The multiobjective optimization techniques presented in this work facilitate the design of a linkage to meet several kinematic and dynamic design criteria. The method can be used for motion, path, and function generation problems. The nonlinear programming formulation also permits the imposition of constraints to eliminate solutions which possess undesirable kinematic and motion characteristics. To model the vague and imprecise information in the problem formulation, the tools of fuzzy set theory have been used. A method of solving the resulting fuzzy multiobjective problem using mathematical programming techniques is presented. The outlined procedure is expected to be useful in situations where doubt arises about the exactness of permissible values, degree of credibility, and correctness of statements and judgements.


Author(s):  
Sebastian Mennicke ◽  
Richard W. Longman ◽  
Meng-Sang Chew ◽  
Hans Georg Bock

High-speed automotive valve train design requires realistic models of the valve train. However, this frequently results in highly nonlinear systems with discontinuities and constraints. Optimality criteria and trade-offs for the designs are frequently performed through a process of simulation and iterative refinement. This paper presents CamOE, a cam design optimization package based on direct multiple shooting optimal control theory, incorporating structured sequential quadratic programming. The code allows the designer to incorporate the constraints of importance and to consider and synthesize appropriate optimality criteria. This allows him or her to synthesize the cam profile at the design stage without resorting to a tedious trial-and-error design process. This paper presents CamOE as a software environment that permits rapid feedback to the designer through the process of numerical experiments in specifying criteria and constraints on the automotive valve train.


1991 ◽  
Vol 113 (3) ◽  
pp. 306-311 ◽  
Author(s):  
A. K. Dhingra ◽  
S. S. Rao

A new integrated approach to the design of high speed planar mechanisms is presented. The resulting nonlinear programming formulation combines both the kinematic and kinetostatic synthesis aspects of mechanism design. The multiobjective optimization techniques presented in this work facilitate the design of a linkage to meet several kinematic and dynamic design criteria. The method can be used for motion, path, and function generation problems. The nonlinear programming formulation also permits an imposition of constraints to eliminate solutions which possess undesirable kinematic and motion characteristics. To model the vague and imprecise information in the problem formulation, the tools of fuzzy set theory have been used. A novel method of solving the resulting fuzzy multiobjective problem using mathematical programming techniques is presented. The outlined procedure is expected to be useful in situations where doubt arises about the exactness of permissible values, degree of credibility, and correctness of statements and judgements.


Author(s):  
Fadi T. Nasser ◽  
Ivan A. Hashim

In modern very large scale integrated (VLSI) digital systems, power consumption has become a critical concern of VLSI designers. As size shrinks and density increases in chips, it will be a challenge to design high performance and low-power digital systems. Therefore, VLSI designers are trying to reduce power dissipation in these systems by using power optimization techniques. Different mathematical operations can be found in the architectures of most digital systems. The focus of this paper is division. In comparison to other basic computational operations, division requires more iterations, takes a long time, covers a large area, and consumes more power from the digital system. As a result, the system's design requires high speed and a low-power divider in order to improve its overall performance. This paper focuses on dynamic power dissipation. In order to determine which design consumes the lowest dynamic power, different system designs of digit-recurrence division algorithms, such as restoring division and non-restoring division are suggested. An innovative power-optimization technique, the very hardware descriptions language (VHDL) technique, is utilized to the suggested system designs. The VHDL technique achieved the higher optimization in dynamic power, at 93.66% for non-restoring division with internal-loop iteration, than traditional approaches.


Author(s):  
Murat Caner ◽  
Chris Gerada ◽  
Greg Asher

Purpose – The purpose of this paper is to introduce a new design optimization technique for a surface mounted permanent magnet (SMPM) machine to increase sensorless performance at high loadings by compromising with torque capability. Design/methodology/approach – An SMPM parametric machine model was created and analysed by finite element analysis (FEA) software by means of the Matlab environment. Eight geometric parameters of the machine were optimized using genetic algorithms (GAs). The outer volume of the machine, namely copper loss per volume, was kept constant. In order to prevent sensorless performance loss at high loading, an optimization process was realized using two loading stages: maximum torque with minimum ripple at nominal load and maximum self-sensing capability at twice load. In order to show the effectiveness of the proposed technique, the obtained results were compared with the classical one-stage optimization realized for each loading condition separately. Findings – With the proposed technique, fairly good performance results of the optimization were obtained when compared with the one-stage optimizations. Using the proposed technique, sensorless performance of the motor was highly increased by compromising torque capability for high loading. Additionally, this paper shows that the self-sensing properties of a SMPM machine should be considered at the design stage of the machine. Originality/value – In related literature, design optimization studies for the sensorless capability of SMPM motor are very few. By increasing optimization performance, new proposed technique provides to achieve good result at high load for sensorless performance compromising torque capability.


1984 ◽  
Vol 106 (2) ◽  
pp. 163-169
Author(s):  
J. L. Yang ◽  
F. H. Chu ◽  
Ting W. Lee

This paper presents a new approach to the dynamic balancing of flexible rotors. The unbalance of a rotor is treated as a combination of a number of discrete unbalancing components, which are identified and subsequently removed using an effective heuristic optimization technique. The method allows the treatment of nonlinear rotor response and design constraints. A specific example is used to illustrate the approach and the results are compared with the ones obtained using another optimum balancing technique.


2020 ◽  
Vol 10 (1) ◽  
pp. 194-219 ◽  
Author(s):  
Sanjoy Debnath ◽  
Wasim Arif ◽  
Srimanta Baishya

AbstractNature inspired swarm based meta-heuristic optimization technique is getting considerable attention and established to be very competitive with evolution based and physical based algorithms. This paper proposes a novel Buyer Inspired Meta-heuristic optimization Algorithm (BIMA) inspired form the social behaviour of human being in searching and bargaining for products. In BIMA, exploration and exploitation are achieved through shop to shop hoping and bargaining for products to be purchased based on cost, quality of the product, choice and distance to the shop. Comprehensive simulations are performed on 23 standard mathematical and CEC2017 benchmark functions and 3 engineering problems. An exhaustive comparative analysis with other algorithms is done by performing 30 independent runs and comparing the mean, standard deviation as well as by performing statistical test. The results showed significant improvement in terms of optimum value, convergence speed, and is also statistically more significant in comparison to most of the reported popular algorithms.


2021 ◽  
Vol 13 (3) ◽  
pp. 1274
Author(s):  
Loau Al-Bahrani ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
Alex Stojcevski

Few non-traditional optimization techniques are applied to the dynamic economic dispatch (DED) of large-scale thermal power units (TPUs), e.g., 1000 TPUs, that consider the effects of valve-point loading with ramp-rate limitations. This is a complicated multiple mode problem. In this investigation, a novel optimization technique, namely, a multi-gradient particle swarm optimization (MG-PSO) algorithm with two stages for exploring and exploiting the search space area, is employed as an optimization tool. The M particles (explorers) in the first stage are used to explore new neighborhoods, whereas the M particles (exploiters) in the second stage are used to exploit the best neighborhood. The M particles’ negative gradient variation in both stages causes the equilibrium between the global and local search space capabilities. This algorithm’s authentication is demonstrated on five medium-scale to very large-scale power systems. The MG-PSO algorithm effectively reduces the difficulty of handling the large-scale DED problem, and simulation results confirm this algorithm’s suitability for such a complicated multi-objective problem at varying fitness performance measures and consistency. This algorithm is also applied to estimate the required generation in 24 h to meet load demand changes. This investigation provides useful technical references for economic dispatch operators to update their power system programs in order to achieve economic benefits.


Environments ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 61
Author(s):  
Maria Cecilia Mancini ◽  
Filippo Arfini ◽  
Federico Antonioli ◽  
Marianna Guareschi

(1) Background: A large body of literature is available on the environmental, social, and economic sustainability of alternative food systems, but not much of it is devoted to the dynamics underlying their design and implementation, more specifically the processes that make an alternative food system successful or not in terms of its sustainability aims. This gap seems to be particularly critical in studies concerning alternative food systems in urban and peri-urban agriculture (UPA). This paper explores how the design and implementation of multifunctional farming activity in a peri-urban area surrounding the city of Reggio Emilia in the Emilia-Romagna region of Italy impact the achievement of its sustainability aims. (2) Methods: The environmental, social, and economic components of this project are explored in light of the sociology of market agencements. This method brings up the motivations of the human entities involved in the project, the role played by nonhuman entities, and the technical devices used for the fulfillment of the project’s aims. (3) Results: The alternative food system under study lacked a robust design phase and a shared definition of the project aims among all the stakeholders involved. This ended in a substantial mismatch between project aims and consumer expectations. (4) Conclusions: When a comprehensive design stage is neglected, the threefold aim concerning sustainability might not be achievable. In particular, the design of alternative food systems must take into account the social environment where it is intended to be put in place, especially in UPA, where consumers often live in suburban neighborhoods wherein the sense of community is not strong, thus preventing them from getting involved in a community-based project. In such cases, hybridization can play a role in the sustainability of alternative food networks, provided that some trade-offs occur among the different components of sustainability—some components of sustainability will be fully achieved, while others will not.


Sign in / Sign up

Export Citation Format

Share Document