scholarly journals Power optimization of binary division based on FPGA

Author(s):  
Fadi T. Nasser ◽  
Ivan A. Hashim

In modern very large scale integrated (VLSI) digital systems, power consumption has become a critical concern of VLSI designers. As size shrinks and density increases in chips, it will be a challenge to design high performance and low-power digital systems. Therefore, VLSI designers are trying to reduce power dissipation in these systems by using power optimization techniques. Different mathematical operations can be found in the architectures of most digital systems. The focus of this paper is division. In comparison to other basic computational operations, division requires more iterations, takes a long time, covers a large area, and consumes more power from the digital system. As a result, the system's design requires high speed and a low-power divider in order to improve its overall performance. This paper focuses on dynamic power dissipation. In order to determine which design consumes the lowest dynamic power, different system designs of digit-recurrence division algorithms, such as restoring division and non-restoring division are suggested. An innovative power-optimization technique, the very hardware descriptions language (VHDL) technique, is utilized to the suggested system designs. The VHDL technique achieved the higher optimization in dynamic power, at 93.66% for non-restoring division with internal-loop iteration, than traditional approaches.

2021 ◽  
Vol 23 (11) ◽  
pp. 172-183
Author(s):  
Ketan J. Raut ◽  
◽  
Abhijit V. Chitre ◽  
Minal S. Deshmukh ◽  
Kiran Magar ◽  
...  

Since CMOS technology consumes less power it is a key technology for VLSI circuit design. With technologies reaching the scale of 10 nm, static and dynamic power dissipation in CMOS VLSI circuits are major issues. Dynamic power dissipation is increased due to requirement of high speed and static power dissipation is at much higher side now a days even compared to dynamic power dissipation due to very high gate leakage current and subthreshold leakage. Low power consumption is equally important as speed in many applications since it leads to a reduction in the package cost and extended battery life. This paper surveys contemporary optimization techniques that aims low power dissipation in VLSI circuits.


2021 ◽  
Vol 11 (2) ◽  
pp. 1419-1429
Author(s):  
Alivelu Manga N.

In today’s deep submicron VLSI (Very Large-Scale Integration) Integrated Circuits, power optimization and speed play a very important role. This importance for low power has initiated the designs where power dissipation is equally important as performance and area. Power reduction and power management are the key challenges in the design of circuits down to 100nm. For power optimization, there are several techniques and extension designs are applied in the literature. In real time Digital Signal Processing applications, multiplication and accumulation are significant operations. The primary performance criteria for these signal processing operations are speed and power consumption. To lower the power consumption, there are techniques like Multi threshold (Multi-Vth), Dula-Vth etc. Among those, a technique known as GDI (Gate diffusion Input) is used which allows reduction in power, delay and area of digital circuits, while maintaining low complexity of logic design. In this paper, various signal processing blocks like parallel-prefix adder, Braun multiplier and a Barrel shifter are designed using GDI (Gate diffusion Input) technique and compared with conventional CMOS (Complementary Metal Oxide Semiconductor) based designs in terms of delay and speed. The designs are simulated using Cadence Virtuoso 45nm technology. The Simulation results shows that GDI based designs consume less power and delay also reduced compared to CMOS based designs.


2018 ◽  
Vol 27 (13) ◽  
pp. 1850200 ◽  
Author(s):  
Abdoul Rjoub ◽  
Ehab M. Ghabashneh

The demand for high performance, low power/secured handheld equipment increased the need for high speed/low energy and efficient encryption/decryption algorithms. Recently, efficient techniques were suggested to increase the standard of security as well as the speed of portable and handheld devices. Also, those techniques cause increment in the lifetime of battery by reducing the total silicon capacitance and minimizing the switching activity. This paper presents two approaches to reduce the number of logic gates at S7 and S9 of MISTY1 in order to reduce the total delay time, power dissipation and silicon area. The Logic Gate Reduction Approach (LGRA) reduces the number of logic gates by applying Boolean Algebra rules and simplifications, while the Duplicated Gate Reduction Approach (DGRA) removes the redundant XOR and AND logic gates which form the S7 and S9 blocks ciphers. The LGRA approach shows that the throughput enhanced by 21.1% compared to the conventional design, the silicon area reduced by 26.8%, while the dynamic power dissipation is reduced by 21.7% on average. The DGRA approach shows that the throughput enhanced by 3.8% compared to the conventional design, the silicon area reduced by 31.7%, while the dynamic power dissipation is reduced by 27% on average. As a result, the proposed approaches could be fit for next generation of handheld and portable devices.


Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


2021 ◽  
Vol 13 (3) ◽  
pp. 1274
Author(s):  
Loau Al-Bahrani ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
Alex Stojcevski

Few non-traditional optimization techniques are applied to the dynamic economic dispatch (DED) of large-scale thermal power units (TPUs), e.g., 1000 TPUs, that consider the effects of valve-point loading with ramp-rate limitations. This is a complicated multiple mode problem. In this investigation, a novel optimization technique, namely, a multi-gradient particle swarm optimization (MG-PSO) algorithm with two stages for exploring and exploiting the search space area, is employed as an optimization tool. The M particles (explorers) in the first stage are used to explore new neighborhoods, whereas the M particles (exploiters) in the second stage are used to exploit the best neighborhood. The M particles’ negative gradient variation in both stages causes the equilibrium between the global and local search space capabilities. This algorithm’s authentication is demonstrated on five medium-scale to very large-scale power systems. The MG-PSO algorithm effectively reduces the difficulty of handling the large-scale DED problem, and simulation results confirm this algorithm’s suitability for such a complicated multi-objective problem at varying fitness performance measures and consistency. This algorithm is also applied to estimate the required generation in 24 h to meet load demand changes. This investigation provides useful technical references for economic dispatch operators to update their power system programs in order to achieve economic benefits.


2002 ◽  
Vol 11 (01) ◽  
pp. 51-55
Author(s):  
ROBERT C. CHANG ◽  
L.-C. HSU ◽  
M.-C. SUN

A novel low-power and high-speed D flip-flop is presented in this letter. The flip-flop consists of a single low-power latch, which is controlled by a positive narrow pulse. Hence, fewer transistors are used and lower power consumption is achieved. HSPICE simulation results show that power dissipation of the proposed D flip-flop has been reduced up to 76%. The operating frequency of the flip-flop is also greatly increased.


2017 ◽  
Vol 21 (1) ◽  
pp. 3
Author(s):  
Burhan Khurshid

Generalized Parallel Counters (GPCs) are frequently used in constructing high speed compressor trees. Previous work has focused on achieving efficient mapping of GPCs on FPGAs by using a combination of general Look-up table (LUT) fabric and specialized fast carry chains. The  resulting structures are purely combinational and cannot be efficiently pipelined to achieve the potential FPGA performance. In this paper, we take an alternate approach and try to eliminate the fast carry chain from the GPC structure. We present a heuristic that maps GPCs on FPGAS using only general LUT fabric. The resultant GPCs are then easily re-timed by placing registers at the fan-out nodes of each LUT. We have used our heuristic on various GPCs reported in prior work. Our heuristic successfully eliminates the carry chain from the GPC structure with the same LUT count in most of the cases. Experimental results using Xilinx Kintex-7 FPGAs show a considerable reduction in critical path and dynamic power dissipation with same area utilization in most of the cases.


Sign in / Sign up

Export Citation Format

Share Document