Static Characteristics of a Slot-Entry Gas Journal Bearing With Feeding Holes

1988 ◽  
Vol 110 (4) ◽  
pp. 587-591 ◽  
Author(s):  
S. Yoshimoto

This paper describes the static characteristics of a slot-entry gas journal bearing with feeding holes. Gas flow in this bearing is restricted first by inflow resistance when gas rapidly flows into the narrow gap of the slot region from isolated feeding holes, and then, restricted more by viscous resistance in the slot region. Therefore, the maximum load capacity and stiffness in this type of bearing can be easily obtained even in a very small bearing clearance of less than 10 μm because gas flow entering the journal can be restricted to a very small amount. Here, the static characteristics of this type of bearings are determined numerically by using the finite difference method. The validity of the theoretical predictions is confirmed by comparison with the experimental results.

1989 ◽  
Vol 111 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Nobuyoshi Kawabata ◽  
Yasumi Ozawa ◽  
Shuji Kamaya ◽  
Yutaka Miyake

A new type herringbone grooved journal bearing, which produces an oil film bearing pressure with a shaft or bearing rotation in either direction, is proposed in this paper. A numerical analysis of the bearing parameters using the narrow groove theory and the Gu¨mbel condition confirmed that the load capacity of this bearing and the radial load component (related to stability) do not differ greatly from those of a conventional bearing. The values of the bearing parameters which give maximum load capacity, and the values of the load capacity and its direction angle are also determined numerically for the case of either grooved member or smooth member rotation.


1966 ◽  
Vol 88 (1) ◽  
pp. 191-198 ◽  
Author(s):  
C. H. T. Pan ◽  
S. B. Malanoski ◽  
P. H. Broussard ◽  
J. L. Burch

An asymptotic analysis for the cylindrical squeeze-film gas journal bearing has been formulated. An approximate analytical solution is presented. Load-deflection experiments have been performed on a double-film, squeeze-film gas journal bearing. The experimental data confirm the theoretical predictions. Design curves are given for the steady-state radial load capacity and radial stiffness of the cylindrical gas journal bearing.


1968 ◽  
Vol 90 (1) ◽  
pp. 271-280 ◽  
Author(s):  
B. J. Hamrock

A linearized PH solution to the Reynolds equation was obtained while neglecting side leakage. The analysis was divided into two parts—the step and ridge regions. The pressure profile across the step and ridge region of the various pads which are placed around the journal was obtained from the linearized PH Reynolds equation. Knowing the pressure, the load components and attitude angle were calculated. The resulting equations were found to be a function of the bearing parameters (the eccentricity and compressibility number) and the step parameters (ratio of the stepped clearance to the ridge clearance, ratio of the angle extended by the ridge to the angle extended by the pad, and number of pads placed around the journal). The maximum load capacity can be determined by numerically differentiating the load with respect to the step bearing parameters while finding where the slope is zero. A series of data was run while varying the bearing parameters. The attitude angle was calculated for the various cases which were run.


Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


1980 ◽  
Vol 22 (2) ◽  
pp. 79-94 ◽  
Author(s):  
R. E. Hinton ◽  
J. B. Roberts

Experimental results are presented, relating to the friction factor, load capacity and attitude angle, for a plain, cylindrical journal bearing with a central, circumferential inlet groove. The length to diameter ratio of the journal bearing was 1/3 and the clearance ratio was 0.011. By the use of various lubricants, including water, Reynolds numbers ranging from 40 to 50 000 were attained. Comparisons with various theoretical predictions are given. It is shown that a simple, empirical theory, which incorporates measured friction factors, gives better agreement with the experimental load capacity results than previous theories.


1969 ◽  
Vol 91 (4) ◽  
pp. 641-650 ◽  
Author(s):  
B. J. Hamrock ◽  
W. J. Anderson

A theoretical analysis of the pressure distribution, load, capacity, and attitude angle for a single-step concentric as well as a multistep infinite length eccentric Rayleigh step journal bearing is performed. The results from the single-step concentric analysis indicated that the maximum load capacity is obtained when the film thickness ratio is 1.7 and the ratio of the angle subtended by the ridge to the angle subtended by the pad is 0.35. The results from the infinite length eccentric analysis indicated that one step placed around the journal was optimal. For eccentricity ratios greater than or equal to 0.2 the maximum load occurred for a bearing without a step or a Sommerfeld bearing. For eccentricity ratios less than 0.2 the optimal film thickness ratio is 1.7 while there are three optimal ratios of angle subtended by the ridge to the angle subtended by the pad of 0.4, 0.45, and 0.5 depending on whether load capacity or stability or both load capacity and stability is more important in the application being considered.


2021 ◽  
Vol 11 (12) ◽  
pp. 5714
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Yuri Pikalov ◽  
Iakov Pikalov ◽  
...  

Aerostatic bearings are attractive, with minimal friction losses, high durability, and environmental friendliness. However, such designs have a number of disadvantages, including low load-bearing capacity and high compliance due to high air compressibility and limited injection pressure. The article proposes a double-row aerostatic journal bearing with an external combined throttling system and longitudinal microgrooves in the inter-row zone. It is hypothesized that the use of microgrooves will reduce the circumferential flows of compressed air, as a result of which the compliance should decrease and the bearing capacity should increase. To test the hypothesis, we carried out the mathematical modeling, calculations, and theoretical study of stationary operation modes of the bearing for small shaft eccentricities in the vicinity of the central equilibrium position of the shaft and bearing capacity for arbitrary eccentricities. Formulas were obtained for the numerical evaluation of compliance for bearings with a smooth bushing surface and with longitudinal microgrooves. Iterative finite-difference methods for evaluating the fields of the squared pressure are proposed, on the basis of which the load capacity of the bearings is calculated. Experimental verification of the bearing’s theoretical characteristics was carried out, which showed satisfactory agreement between the compared data. The study of the compliance and load capacity of a microgroove bearing yielded impressive results. We show that the positive effect from the application of the improvement begins to manifest itself already at four microgrooves; the effect becomes significant at six microgrooves, and at twelve or more microgrooves, the circumferential flows in the bearing gap practically disappear; therefore, the bearing characteristics can be calculated on the basis of one-dimensional models of air lubrication longitudinal flow. Calculations have shown that for a length of L = 1, the maximum load capacity of a bearing with microgrooves is 1.5 times higher than that of a conventional bearing; for L ≥ 1.5, the bearing capacity increases twice or more. The result obtained allows us to recommend the proposed improvement for practical use in order to increase the load capacity of aerostatic journal bearings significantly.


Author(s):  
V. V. Volkov-Muzylev ◽  
Yu. A. Borisov ◽  
A. S. Pugachuk ◽  
V. N. Beschastnykh

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Shuyun Jiang ◽  
Shengye Lin ◽  
Chundong Xu

This paper studies the static and dynamic coefficients of an externally pressurized porous gas journal bearing. The finite difference method is used to solve the Reynolds equation of the bearing to obtain the static load capacity. The linear perturbation method is adopted to derive the perturbation equations considering four degrees-of-freedom (4DOF), namely, the translational movements in x and y directions and the rotational movements around x and y directions. The effects of various parameters on the dynamic behaviors of the journal bearing are studied. These parameters include the bearing number, the supply pressure, the feeding parameter, the length-to-diameter ratio, the porosity parameter, the eccentricity ratio, and tilting angles. Simulated results prove that the proposed method is valid in estimating the static and dynamic characteristics of a porous gas journal bearing with 4DOF.


Sign in / Sign up

Export Citation Format

Share Document