Theory and Experiments of Squeeze-Film Gas Bearings: Part 1—Cylindrical Journal Bearing

1966 ◽  
Vol 88 (1) ◽  
pp. 191-198 ◽  
Author(s):  
C. H. T. Pan ◽  
S. B. Malanoski ◽  
P. H. Broussard ◽  
J. L. Burch

An asymptotic analysis for the cylindrical squeeze-film gas journal bearing has been formulated. An approximate analytical solution is presented. Load-deflection experiments have been performed on a double-film, squeeze-film gas journal bearing. The experimental data confirm the theoretical predictions. Design curves are given for the steady-state radial load capacity and radial stiffness of the cylindrical gas journal bearing.

1988 ◽  
Vol 110 (4) ◽  
pp. 587-591 ◽  
Author(s):  
S. Yoshimoto

This paper describes the static characteristics of a slot-entry gas journal bearing with feeding holes. Gas flow in this bearing is restricted first by inflow resistance when gas rapidly flows into the narrow gap of the slot region from isolated feeding holes, and then, restricted more by viscous resistance in the slot region. Therefore, the maximum load capacity and stiffness in this type of bearing can be easily obtained even in a very small bearing clearance of less than 10 μm because gas flow entering the journal can be restricted to a very small amount. Here, the static characteristics of this type of bearings are determined numerically by using the finite difference method. The validity of the theoretical predictions is confirmed by comparison with the experimental results.


1974 ◽  
Vol 96 (3) ◽  
pp. 361-364 ◽  
Author(s):  
P. R. K. Murti

The dynamic behavior of squeeze film in a narrow porous journal bearing under a cyclic load is analyzed. A thin-walled bearing with a nonrotating journal is considered and a closed form expression for the pressure distribution is derived. The locus of the journal center is found by numerical methods and it is established with an example that actual contact between the journal and bearing can be avoided by appropriate design of the bearing. Consequently, it is proved that pure squeeze films have a load capacity only under cyclic loads. The analysis also reveals that the permeability of the bearing material and the wall thickness of the bearing influence significantly the operating eccentricity ratio.


1980 ◽  
Vol 22 (2) ◽  
pp. 79-94 ◽  
Author(s):  
R. E. Hinton ◽  
J. B. Roberts

Experimental results are presented, relating to the friction factor, load capacity and attitude angle, for a plain, cylindrical journal bearing with a central, circumferential inlet groove. The length to diameter ratio of the journal bearing was 1/3 and the clearance ratio was 0.011. By the use of various lubricants, including water, Reynolds numbers ranging from 40 to 50 000 were attained. Comparisons with various theoretical predictions are given. It is shown that a simple, empirical theory, which incorporates measured friction factors, gives better agreement with the experimental load capacity results than previous theories.


1967 ◽  
Vol 89 (4) ◽  
pp. 433-438 ◽  
Author(s):  
S. B. Malanoski

Shallow grooving in a herringbone pattern has been proposed to enhance the stability of both gas and liquid-lubricated journal bearings. It has been shown theoretically that this possibility is particularly advantageous for unloaded journal bearings. This paper describes corroborating experiments. The experiments included the running of an unloaded bearing up to speeds of 60,000 rpm and the collection of steady-state load-displacement, attitude angle data at intermediate speeds up to and including 60,000 rpm. No sign of bearing whirl instability was detected. There was good correlation between theoretical and experimental data. Design data for the partially grooved journal bearing is included for future designs.


1989 ◽  
Vol 111 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Nobuyoshi Kawabata ◽  
Yasumi Ozawa ◽  
Shuji Kamaya ◽  
Yutaka Miyake

A new type herringbone grooved journal bearing, which produces an oil film bearing pressure with a shaft or bearing rotation in either direction, is proposed in this paper. A numerical analysis of the bearing parameters using the narrow groove theory and the Gu¨mbel condition confirmed that the load capacity of this bearing and the radial load component (related to stability) do not differ greatly from those of a conventional bearing. The values of the bearing parameters which give maximum load capacity, and the values of the load capacity and its direction angle are also determined numerically for the case of either grooved member or smooth member rotation.


1964 ◽  
Vol 86 (2) ◽  
pp. 348-353 ◽  
Author(s):  
B. K. Gupta ◽  
R. M. Phelan

The development of the Reynolds equation for the general case of dynamically loaded journal bearings is extended to include the concept of an effective speed that combines in one term the angular velocities of the journal, bearing, and load. Numerical solutions for the short-bearing approximation are presented for the case of an oscillating effective speed and a load that is constant or varying sinusoidally. Results are compared with available experimental data. The major conclusion is that for those cases involving an oscillating effective speed and a reversing load, the only significant contribution to load capacity comes from the squeeze film and the wedge film can safely be ignored when designing such bearings.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Shuyun Jiang ◽  
Shengye Lin ◽  
Chundong Xu

This paper studies the static and dynamic coefficients of an externally pressurized porous gas journal bearing. The finite difference method is used to solve the Reynolds equation of the bearing to obtain the static load capacity. The linear perturbation method is adopted to derive the perturbation equations considering four degrees-of-freedom (4DOF), namely, the translational movements in x and y directions and the rotational movements around x and y directions. The effects of various parameters on the dynamic behaviors of the journal bearing are studied. These parameters include the bearing number, the supply pressure, the feeding parameter, the length-to-diameter ratio, the porosity parameter, the eccentricity ratio, and tilting angles. Simulated results prove that the proposed method is valid in estimating the static and dynamic characteristics of a porous gas journal bearing with 4DOF.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


1983 ◽  
Vol 105 (3) ◽  
pp. 422-428 ◽  
Author(s):  
J. Ferron ◽  
J. Frene ◽  
R. Boncompain

Both theoretical and experimental thermohydrodynamic problem of a finite length journal bearing is studied. The analysis takes into acount heat transfer between the film and both the shaft and the bush. Cavitation and lubricant recirculation are also taken into account. The experimental program is conducted on an original device to study the performance of a plain bearing. The pressure and the temperature distribution on bearing wall are measured along with the eccentricity ratio and the flows rate for different speeds and loads. The effect on the eccentricity ratio of differential dilatation is underlined. Agreement between theoretical results and experimental data is satisfactory.


1970 ◽  
Vol 92 (1) ◽  
pp. 179-180
Author(s):  
D. C. Kuzma

The complete film solution for the squeeze film in an infinitely long journal bearing contains an arbitrary constant. When only positive pressure regions are retained, this constant influences the load capacity. Several different values have been used for this constant. Its value is determined here so that the infinitely long journal bearing is the limiting case of the finite journal bearing.


Sign in / Sign up

Export Citation Format

Share Document