Dynamic Stability of Isotropic or Composite-Material Cylindrical Shells Containing Swirling Fluid Flow

1977 ◽  
Vol 44 (1) ◽  
pp. 112-116 ◽  
Author(s):  
T. L. C. Chen ◽  
C. W. Bert

A linear stability analysis is presented for a thin-walled, circular cylindrical shell of orthotropic material conveying a swirling flow. Shell motion is modeled by using the dynamic orthotropic version of the Sanders shell theory and fluid forces are described by inviscid, incompressible flow theory. The critical flow velocities are determined for piping made of composite and isotropic materials conveying swirling water. Fluid rotation strongly degrades the stability of the shell/fluid system, i.e. increasing the fluid rotating speed severely decreases the critical flow velocity.

1967 ◽  
Vol 34 (4) ◽  
pp. 991-998 ◽  
Author(s):  
G. A. Hegemier

The stability of a long, thin, elastic circular cylindrical shell subjected to axial compression and an axisymmetric load moving with constant velocity along the shell axis is studied. With the aid of the direct method of Liapunov, and employing a nonlinear Donnell-type shell theory, sufficient conditions for local stability of the axisymmetric response are established in a functional space whose metric is defined in an average sense. Numerical results, which are presented for the case of a moving decayed step load, reveal that the sufficient conditions for stability developed here and the sufficient conditions for instability obtained in a previous paper lead to the actual stability transition boundary.


Author(s):  
Atsuhiko Shintani ◽  
Hirokazu Isono ◽  
Tomohiro Ito ◽  
Chihiro Nakagawa

In this study, the stability of a structure and mitigation of the vibration of a structure subjected to annular flow are investigated when the parameters of the structure and fluid have variability or uncertainty. The equations of motion of the structure and fluid are given by the Euler-Bernoulli-type partial differential equation and the Navier–Stokes equation, respectively. Hence, the fluid–structure coupled system has variability. The fluid–structure coupled equation considering variability is derived from the above-mentioned equations. By drawing the root locus of the coupled equation, the stability of the coupled system with variability is investigated. Because the parameters of structure and fluid have variability, the critical flow velocity also varies. The effect of parameter variability on the critical flow velocity variability is investigated. Furthermore, to reduce the coupled vibration of the system with variability, a control input is used. Through adequate control, the coupled system with variability is stabilized.


Author(s):  
Marco Amabili ◽  
Kostas Karazis ◽  
Rosaire Mongrain ◽  
Nastaran Shahmansouri

Human aortas are subjected to large mechanical stresses due to blood flow pressurization and through contact with the surrounding tissue. It is essential that the aorta does not lose stability by buckling for its proper functioning to ensure proper blood flow. A refined reduced-order bifurcation analysis model is employed to examine the stability of an aortic segment subjected to internal blood flow. The structural model is based on a nonlinear cylindrical orthotropic laminated composite shell theory that assumes three aortic wall layers representing the tunica intima, media and adventitia. The fluid model contains the unsteady effects obtained from linear potential flow theory and the steady viscous effects obtained from the time-averaged Navier-Stokes equations. Residual stresses due to pressurization are evaluated and included in the model. The aortic segment loses stability by divergence with deformation of the cross-section at a critical flow velocity for a given static pressure, exhibiting a strong subcritical behaviour with partial or total collapse of the inner wall. Subsequent analyses including the effect of geometric wall imperfections indicate that imperfections in the axial direction have a more profound effect on the stability of the aorta decreasing the critical flow velocity for buckling.


Author(s):  
Zeinab Heidary ◽  
Afsaneh Mojra

Carbon nanotubes (CNTs) have emerged as efficient tools in drug delivery systems; therefore, it is essential to refer to the importance of the magnetic field, in addition to the fluid flow on the dynamic behavior of CNTs. Additionally, in such medical applications, the actual working environment of nanotube often contains temperature changes, and CNTs are surrounded by soft tissues with viscoelastic mechanical properties. In this study, the vibrational behavior of CNTs conveying magnetic-fluid flow and resting on a viscoelastic foundation is investigated under various temperature variations. To incorporate the influence of slip velocity at the nanoscale, a correction factor is employed on the basis of the Beskok–Karniadakis model. The nanotube is modeled by the Euler–Bernoulli beam theory, and governing equations of motion are derived by implementing Hamilton’s principle based on Eringen’s nonlocal elasticity theory. Results indicate that by applying a magnetic field with an intensity of 30[Formula: see text]T, the dimensionless critical flow velocity increases from 4.345 to 12.603. Also, the critical flow velocity shows an increase from 4.345 to 5.854 in the presence of a viscoelastic foundation. Furthermore, a temperature variation equal to 20[Formula: see text]K reduces the critical flow velocity dramatically from 4.345 to 1.802 at low temperatures, while an increase from 4.345 to 5.443 is observed at high temperatures. Consequently, while the magnetic field and the viscoelastic foundation affect the system stability, the temperature variation may improve or deteriorate the stability. Therefore, to plan for a medical application, the inclusion of temperature variation is required.


Author(s):  
Igor Zolotarev

Natural frequencies and the thresholds for loosing the stability of thin-walled cylindrical shell conveying by flowing fluid are theoretically studied. Potential flow theory for fluid and 3D theory for thin shells are used. The shells of finite length are considered for the different case of boundary conditions at the edges of the shell, and their influence on the critical flow velocities for flutter are demonstrated. The fundamental importance of boundary conditions considered for fixing the edges of the cylindrical shell of finite length is shown. When the clamped - simply supported boundary conditions are assumed, the critical flow velocity for flutter is very low, even if the energy dissipation due to the fluid viscosity was taken into account.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2019
Author(s):  
Hossein Hamidifar ◽  
Faezeh Zanganeh-Inaloo ◽  
Iacopo Carnacina

Numerous models have been proposed in the past to predict the maximum scour depth around bridge piers. These studies have all focused on the different parameters that could affect the maximum scour depth and the model accuracy. One of the main parameters individuated is the critical velocity of the approaching flow. The present study aimed at investigating the effect of different equations to determine the critical flow velocity on the accuracy of models for estimating the maximum scour depth around bridge piers. Here, 10 scour depth estimation equations, which include the critical flow velocity as one of the influencing parameters, and 8 critical velocity estimation equations were examined, for a total combination of 80 hybrid models. In addition, a sensitivity analysis of the selected scour depth equations to the critical velocity was investigated. The results of the selected models were compared with experimental data, and the best hybrid models were identified using statistical indicators. The accuracy of the best models, including YJAF-VRAD, YJAF-VARN, and YJAI-VRAD models, was also evaluated using field data available in the literature. Finally, correction factors were implied to the selected models to increase their accuracy in predicting the maximum scour depth.


Author(s):  
Tomomichi Nakamura

Fluidelastic vibration of tube arrays caused by cross-flow has recently been highlighted by a practical event. There have been many studies on fluidelastic instability, but almost all works have been devoted to the tube-vibration in the transverse direction to the flow. For this reason, there are few data on the fluidelastic forces for the in-flow movement of the tubes, although the measured data on the stability boundary has gradually increased. The most popular method to estimate the fluidelastic force is to measure the force acting on tubes due to the flow, combined with the movement of the tubes. However, this method does not give the physical explanation of the root-cause of fluidelastic instability. In the work reported here, the in-flow instability is assumed to be a nonlinear phenomenon with a retarded or delayed action between adjacent tubes. The fluid force acting on tubes are estimated, based on the measured data in another paper for the fixed cylinders with distributed pressure sensors on the surface of the cylinders. The fluid force acting on the downstream-cylinder is assumed in this paper to have a delayed time basically based on the distance between the separation point of the upstream-cylinder to the re-attachment point, where the fluid flows with a certain flow velocity. Two models are considered: a two-cylinder and three–cylinder models, based on the same dimensions as our experimental data to check the critical flow velocity. Both models show the same order of the critical flow velocity and a similar trend for the effect of the pitch-to-diameter ratio of the tube arrays, which indicates this analysis has a potential to explain the in-flow instability if an adequate fluid force is used.


2006 ◽  
Vol 129 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Koichi Matsuda ◽  
Shinya Kijimoto ◽  
Yoichi Kanemitsu

The whirl instability occurs at higher rotating speeds for a full circular fluid-film journal bearing, and many types of clearance configuration have been proposed to solve this instability problem. A clearance configuration of fluid-film journal bearings is optimized in a sense of enhancing the stability of the full circular bearing at high rotational speeds. A performance index is chosen as the sum of the squared whirl-frequency ratios over a wide range of eccentricity ratios, and a Fourier series is used to represent an arbitrary clearance configuration of fluid-film bearings. An optimization problem is then formulated to find the Fourier coefficients to minimize the index. The designed bearing has a clearance configuration similar to that of an offset two-lobe bearing for smaller length-to-diameter ratios. It is shown that the designed bearing cannot destabilize the Jeffcott rotor at any high rotating speed for a wide range of eccentricity ratio. The load capacity of the designed bearings is nearly in the same magnitude as that of the full circular bearing for smaller length-to-diameter ratios. The whirl-frequency ratios of the designed bearing are very sensitive to truncating higher terms of the Fourier series for some eccentricity ratio. The designed bearings successfully enhance the stability of a full circular bearing and are free from the whirl instability.


Sign in / Sign up

Export Citation Format

Share Document