Magnetic Suspension for Low-Speed Vehicles

1978 ◽  
Vol 100 (4) ◽  
pp. 333-342 ◽  
Author(s):  
P. K. Sinha

Several forms of novel suspension systems for passenger-carrying vehicles are currently being investigated throughout the world. Most of these, however, are aimed at high-speed, intercity transport systems, and comparatively less development work has been undertaken to provide a new form of low-speed system for urban-transportation. The possibility of using controlled direct-current electromagnets for low-speed (up to 70 kph) vehicle suspension has been explored in this paper. This system, also known as ferromagnetic or attraction suspension system, offers a very attractive combination of design simplicity, low operating and maintenance costs, high reliability and virtually silent operation. This system is also considered to have capital costs comparable with alternative forms of urban-transport systems and could be designed to fit into the existing fabric of cities and towns. The feasibility of the d-c system is illustrated here through analytical and experimental results of the ride and track-clearance characteristics for a single-degree of freedom suspension system. These results are used to formulate a procedure for designing a multimagnet vehicle suspension system. Main design and performance criteria for maglev vehicles are discussed in the context of experimental results obtained from test vehicles. Engineering aspects of some of the system components have been presented with a view to evaluating their suitability for low-speed systems.

1978 ◽  
Vol 11 (11) ◽  
pp. 427-435 ◽  
Author(s):  
P. K. Sinha

The possibility of overcoming wheel friction, wear and vibration by contactless suspension for passenger-carrying vehicles is currently being investigated throughout the world. Of the several forms of magnetic suspension proposed, the one using attraction force generated between controlled direct-current (DC) electromagnets mounted on the vehicle chassis and a ferromagnetic guideway offers a desirable combination of design simplicity and operational flexibility. This paper presents an overview of the various control and design aspects of controlled DC electromagnetic suspension systems for low-speed (up to 70 km/h) urban application. The control requirements of the DC suspension system are evaluated in this paper through ride and track-clearance characteristics for a single-degree of freedom suspension system travelling along a guideway with random roughness. Operation and performance of some of the transducers compatible with the DC suspension system have been considered, and design features of lift magnets and power amplifiers discussed with a view to evaluating their suitability for transport system application.


2020 ◽  
Vol 90 (1) ◽  
pp. 10903
Author(s):  
Guoqing Liu ◽  
Jingchi Wu ◽  
Song Xiao ◽  
Yuanpei Luo ◽  
Can Zhang ◽  
...  

The suspension force − a critical factor in the operation of middle-low-speed maglev trains − is provided by electromagnets. However, the eddy current effect produced by the relative motion between electromagnets and the steel track causes a reduction of the suspension force, especially under high speed. A novel type of permanent-electro-magnetic suspension system is proposed to improve performance by considering the variation of material characteristics with temperature. A 3D dynamic finite element model of this hybrid system − accounting for the influence of temperature − has been created to study the variation of magnetic flux distribution, suspension force and guiding force under different operational speeds of the train, in comparison with the electromagnetic version. Verified by simulations, the hybrid system has superior performance offering a powerful suspension force and a reliable guidance force even at high speeds of the train.


Author(s):  
Sangzhi Zhu ◽  
Guangzhong Xu ◽  
Anton Tkachev ◽  
Lifu Wang ◽  
Nong Zhang

This paper presents an investigation into the road-holding ability of a vehicle equipped with a roll-plane hydraulically interconnected suspension system. Ideally, the roll-plane hydraulically interconnected suspension system has the capability to decouple the roll mode from all the other vehicle suspension modes. However, anti-roll bars are unable to decouple the warp mode from the other modes, and therefore they limit the travel of the wheels and weaken the road-holding ability of a vehicle on uneven road surfaces. In this paper, vehicle dynamic analysis is carried out with three different configurations: a vehicle with only a spring–damper as a benchmark vehicle; a vehicle with a spring–damper in conjunction with anti-roll bars; a vehicle with a spring–damper in conjunction with a roll-plane hydraulically interconnected suspension. Simulations and corresponding experimental verification with different road excitations are then implemented. The experimental results agree well with the simulations under low-frequency road excitations. The results demonstrate that, when the vehicle undergoes off-road driving, the anti-roll bars weaken the road-holding ability of the vehicle while the hydraulically interconnected suspension system has a negligible effect.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2019 ◽  
Vol 12 (4) ◽  
pp. 357-366
Author(s):  
Yong Song ◽  
Shichuang Liu ◽  
Jiangxuan Che ◽  
Jinyi Lian ◽  
Zhanlong Li ◽  
...  

Background: Vehicles generally travel on different road conditions, and withstand strong shock and vibration. In order to reduce or isolate the strong shock and vibration, it is necessary to propose and develop a high-performance vehicle suspension system. Objective: This study aims to report a pneumatic artificial muscle bionic kangaroo leg suspension to improve the comfort performance of vehicle suspension system. Methods: In summarizing the existing vehicle suspension systems and analyzing their advantages and disadvantages, this paper introduces a new patent of vehicle suspension system based on the excellent damping and buffering performance of kangaroo leg, A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension. According to the biomimetic principle, the pneumatic artificial muscles bionic kangaroo leg suspension with equal bone ratio is constructed on the basis of the kangaroo leg crural index, and two working modes (passive and active modes) are designed for the suspension. Moreover, the working principle of the suspension system is introduced, and the rod system equations for the suspension structure are built up. The characteristic simulation model of this bionic suspension is established in Adams, and the vertical performance is analysed. Results: It is found that the largest deformation happens in the bionic heel spring and the largest angle change occurs in the bionic ankle joint under impulse road excitation, which is similar to the dynamic characteristics of kangaroo leg. Furthermore, the dynamic displacement and the acceleration of the vehicle body are both sharply reduced. Conclusion: The simulation results show that the comfort performance of this bionic suspension is excellent under the impulse road excitation, which indicates the bionic suspension structure is feasible and reasonable to be applied to vehicle suspensions.


Sign in / Sign up

Export Citation Format

Share Document