Multiplication of LNG Cold to Produce Refrigeration at 273 K

1975 ◽  
Vol 97 (3) ◽  
pp. 915-920
Author(s):  
G. Best Brown

It is becoming of great importance to develop processes which can utilize the “available cold” of LNG and thus recover the energy used for its liquefaction. It is possible to evaluate the amount of refrigeration that could be produced reversibly Q1, at a temperature T1, from the amount of cold available, Q2, at a lower temperature, T2, in an environment at T0. This is:Q1Q2≤T0−T2T0−T1·T1T2 For LNG it would be obtained that: Q1Q2≤13.5 Work is being done to develop cold multiplication cycles which would approach this ideal figure. Among the systems under development is an absorption process resembling a reversal of the well-known absorption refrigerator. An ethane-neoheptane system is presented for which the multiplication factor has been around 1.8 and the efficiency of around 17 percent. The irreversibilities of the cycle and the low enthalpy of mixing of hydrocarbons are the main reasons for the relatively low cold multiplication factor and thermodynamic efficiency.

2021 ◽  
Vol 233 ◽  
pp. 01044
Author(s):  
Guoyan Zhang ◽  
Shengyong Liu ◽  
Jie Lu ◽  
Jiong Wang ◽  
Yongtao Ma

Based on Fluent software, a mathematical model of thermosyphon pump is established and numerical simulation is carried out to study the influence of riser tube length, tube diameter and immersion ratio on liquid lifting capacity and efficiency. The results showed that: the liquid lifting volume increased with the increase of immersion ratio, whereas the lifting efficiency showed a trend of increasing followed by decreasing. The highest lifting efficiency for a 340mm long, 6mm diameter riser achieved when the immersion ratio is 0.35. With the increasing of the height in riser, the velocity of the gas phase close to the wall in the thermosyphon pump was higher than the velocity along the radial direction. In order to enhance fluid interchange, corners of the refrigeration box were designed to be arc-shaped with a higher corner speed and lower temperature.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7047
Author(s):  
Hongsheng Wang ◽  
Hui Kong ◽  
Jian Wang ◽  
Mingkai Liu ◽  
Bosheng Su ◽  
...  

Solar fuel generation from thermochemical H2O or CO2 splitting is a promising and attractive approach for harvesting fuel without CO2 emissions. Yet, low conversion and high reaction temperature restrict its application. One method of increasing conversion at a lower temperature is to implement oxygen permeable membranes (OPM) into a membrane reactor configuration. This allows for the selective separation of generated oxygen and causes a forward shift in the equilibrium of H2O or CO2 splitting reactions. In this research, solar-driven fuel production via H2O or CO2 splitting with an OPM reactor is modeled in isothermal operation, with an emphasis on the calculation of the theoretical thermodynamic efficiency of the system. In addition to the energy required for the high temperature of the reaction, the energy required for maintaining low oxygen permeate pressure for oxygen removal has a large influence on the overall thermodynamic efficiency. The theoretical first-law thermodynamic efficiency is calculated using separation exergy, an electrochemical O2 pump, and a vacuum pump, which shows a maximum efficiency of 63.8%, 61.7%, and 8.00% for H2O splitting, respectively, and 63.6%, 61.5%, and 16.7% for CO2 splitting, respectively, in a temperature range of 800 °C to 2000 °C. The theoretical second-law thermodynamic efficiency is 55.7% and 65.7% for both H2O splitting and CO2 splitting at 2000 °C. An efficient O2 separation method is extremely crucial to achieve high thermodynamic efficiency, especially in the separation efficiency range of 0–20% and in relatively low reaction temperatures. This research is also applicable in other isothermal H2O or CO2 splitting systems (e.g., chemical cycling) due to similar thermodynamics.


Author(s):  
Richard S. Thomas ◽  
Prabir K. Basu ◽  
Francis T. Jones

Silicon tetrachloride, used in industry for the production of highest purity silicon and silica, is customarily manufactured from silica-sand and charcoal.SiCl4 can also be made from rice hulls, which contain up to 20 percent silica and only traces of other mineral matter. Hulls, after carbonization, actually prove superior as a starting material since they react at lower temperature. This use of rice hulls may offer a new, profitable solution for a rice mill byproduct disposal problem.In studies of the reaction kinetics with carbonized hulls, conversion of SiO2 to SiCl4 was found to proceed within a few minutes to a constant, limited yield which depended reproducibly on the ambient temperature of the reactor. See Fig. 1. This suggested that physical or chemical heterogeneity of the silica in the hull structure might be involved.


1977 ◽  
Vol 16 (04) ◽  
pp. 163-167
Author(s):  
K. Bakos ◽  
Věra Wernischová

SummaryWhole-body counting makes an important contribution of radioisotope techniques to ȁEin vivo“ absorption studies, in comparison with other methods. In a large number of subjects, the method was tested for its usefulness in the diagnosis of calcium malabsorption. The effects of drugs, of the calcium load in the gut and of the whole-body content of calcium on the absorption process were studied in a control group.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (9) ◽  
pp. 565-576 ◽  
Author(s):  
YUCHENG PENG ◽  
DOUGLAS J. GARDNER

Understanding the surface properties of cellulose materials is important for proper commercial applications. The effect of particle size, particle morphology, and hydroxyl number on the surface energy of three microcrystalline cellulose (MCC) preparations and one nanofibrillated cellulose (NFC) preparation were investigated using inverse gas chromatography at column temperatures ranging from 30ºC to 60ºC. The mean particle sizes for the three MCC samples and the NFC sample were 120.1, 62.3, 13.9, and 9.3 μm. The corresponding dispersion components of surface energy at 30°C were 55.7 ± 0.1, 59.7 ± 1.3, 71.7 ± 1.0, and 57.4 ± 0.3 mJ/m2. MCC samples are agglomerates of small individual cellulose particles. The different particle sizes and morphologies of the three MCC samples resulted in various hydroxyl numbers, which in turn affected their dispersion component of surface energy. Cellulose samples exhibiting a higher hydroxyl number have a higher dispersion component of surface energy. The dispersion component of surface energy of all the cellulose samples decreased linearly with increasing temperature. MCC samples with larger agglomerates had a lower temperature coefficient of dispersion component of surface energy.


2020 ◽  
Vol 65 (3) ◽  
pp. 236
Author(s):  
R. M. Rudenko ◽  
O. O. Voitsihovska ◽  
V. V. Voitovych ◽  
M. M. Kras’ko ◽  
A. G. Kolosyuk ◽  
...  

The process of crystalline silicon phase formation in tin-doped amorphous silicon (a-SiSn) films has been studied. The inclusions of metallic tin are shown to play a key role in the crystallization of researched a-SiSn specimens with Sn contents of 1–10 at% at temperatures of 300–500 ∘C. The crystallization process can conditionally be divided into two stages. At the first stage, the formation of metallic tin inclusions occurs in the bulk of as-precipitated films owing to the diffusion of tin atoms in the amorphous silicon matrix. At the second stage, the formation of the nanocrystalline phase of silicon occurs as a result of the motion of silicon atoms from the amorphous phase to the crystalline one through the formed metallic tin inclusions. The presence of the latter ensures the formation of silicon crystallites at a much lower temperature than the solid-phase recrystallization temperature (about 750 ∘C). A possibility for a relation to exist between the sizes of growing silicon nanocrystallites and metallic tin inclusions favoring the formation of nanocrystallites has been analyzed.


2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


Sign in / Sign up

Export Citation Format

Share Document