Epicyclic Gear Vibrations

1976 ◽  
Vol 98 (3) ◽  
pp. 811-815 ◽  
Author(s):  
M. Botman

The natural frequenices of in-plane vibration of a single planetary gear stage are analyzed. The gear tooth stiffnesses are approximated as linear springs. The effect of planet pin stiffness on the natural frequencies is evaluated. Rotation of the carrier gives rise to a system with periodic coefficients which is solved by means of Floquet’s theory. The rotation of the carrier appears to suppress the nonaxisymmetric modes which are present in the system with nonrotating carrier.

2021 ◽  
Vol 6 (3) ◽  
pp. 164-169
Author(s):  
K. A. Olanipekun

The mesh stiffness of gear teeth is one of the major sources of excitation in gear systems. Many analytical and finite element methods have been proposed in order to determine the mesh stiffness of gears especially parallel axis spur gears. Most of these methods are not trivial because they involve complicated analyses which incorporate parameters like gear tooth error, gear spalling sizes and shapes, nonlinear contact stiffness and sliding friction before mesh stiffness can be determined. In this work, a method is proposed to determine the sun-planet and ring-planet mesh stiffnesses of a planetary gear system. This approach involves fitting a relationship between the measured natural frequencies from an experimental modal test and natural frequencies predicted using an analytical model of a planetary gear. This method is relatively easier compared to the existing methods which involve complicated analyses. For this study, the average mesh stiffness estimated is 12.5 MN/m.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3736
Author(s):  
Jae-Oh Han ◽  
Won-Hyeong Jeong ◽  
Jong-Seok Lee ◽  
Se-Hoon Oh

As environmental regulations have been strengthened worldwide since the Paris Climate Agreement, the automobile industry is shifting its production paradigm to focus on eco-friendly vehicles such as electric vehicles and hydrogen-battery vehicles. Governments are banning fossil fuel vehicles by law and expanding the introduction of green vehicles. The energy efficiency of electric vehicles that use a limited power source called batteries depends on the driving environment. Applying a two-speed transmission to an electric vehicle can optimize average speed and performance efficiency at low speeds, and achieve maximum speed with minimal torque at high speeds. In this study, a two-speed transmission for an electric vehicle has been developed, to be used in a compact electric vehicle. This utilizes a planetary gear of a total of three pairs, made of a single module which was intended to enable two-speed. The ring gear was removed, and the carrier was used in common. When shifting, the energy used for the speed change is small, due to the use of the simple method of fixing the sun gear of each stage. Each gear was designed by calculating bending strength and surface durability, using JGMA standards, to secure stability. The safety factor of the gears used in the transmission is as follows: all gears have been verified for safety with a bending strength of 1.2 or higher and a surface pressure strength of 1.1 or higher. The design validity of the transmission was verified by calculating the gear meshing ratio and the reference efficiency of the gear. The transmission to be developed through the research results of this paper has a simple and compact structure optimized for electric vehicles, and has reduced shift shock. In addition, energy can be used more efficiently, which will help improve fuel economy and increase drive range.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


2012 ◽  
Vol 253-255 ◽  
pp. 2102-2106 ◽  
Author(s):  
Xu Juan Yang ◽  
Zong Hua Wu ◽  
Zhao Jun Li ◽  
Gan Wei Cai

A torsional vibration model of the slewing mechanism of a hydraulic excavator is developed to predict its free vibration characteristics with consideration of many fundamental factors, such as the mesh stiffness of gear pairs, the coupling relationship of a two stage planetary gear trains and the variety of moment of inertia of the input end caused by the motion of work equipment. The natural frequencies are solved using the corresponding eigenvalue problem. Taking the moment of inertia of the input end for example to illustrate the relationship between the natural frequencies of the slewing mechanism and its parameters, based on the simulation results, just the first order frequency varies significantly with the moment of inertia of the input end of the slewing mechanism.


1975 ◽  
Vol 97 (1) ◽  
pp. 23-32 ◽  
Author(s):  
L. S. S. Lee

Vibrations of an intermediately supported U-bend tube fall into two independent classes as an incomplete ring of single span does, namely, the in-plane vibration and the coupled twist-bending out-of-plane vibration. Natural frequencies may be expressed in terms of a coefficient p which depends on the stiffness ratio k, the ratio of lengths of spans, and the supporting conditions. The effect of the torsional flexibility of a curved bar acts to release the bending stiffness of a straight beam and hence decrease the natural frequency. Some conclusions for an incomplete ring of single span may not be equally well applicable to the U-tube case due to the effects of intermediate supports and the presence of the supporting straight segments. Results of the analytical predictions and the experimental tests of an intermediately supported U-tube are in good agreement.


Author(s):  
Hideyuki Imai ◽  
Tatsuhiko Goi ◽  
Kenichi Kijima ◽  
Tooru Nishida ◽  
Hidenori Arisawa ◽  
...  

The open rotor engine is a next generation aero-engine that satisfies the demand for high fuel efficiency and low CO2 emission. A differential planetary gear system is incorporated in the open rotor engine to connect the turbine output shaft and fan rotors in order to counter-rotate the fan rotors as well as allow the turbine and fan rotors to operate at more efficient speeds. The open rotor gear system is required to have not only 20,000 hp high power transmission, but also an increasingly high efficiency, high reliability and light weight. To achieve these requirements, the following design works were conducted; (1) a low misalignment and lightweight carrier, (2) a flexible structure to absorb the displacement caused by the flight load, (3) an optimum gear tooth modification and (4) reduction of oil churning and windage losses. Also, extensive analyses and simulations such as lube oil flow CFD, FEA and tooth contact analysis were conducted. A full scale prototype gear system was manufactured and validation tests were conducted using a newly constructed test rig to validate the design concept. A slow roll test, rated performance test and efficiency test were conducted. And the design concept was found to be valid. This paper describes details of the prototype design and the results of the validation tests.


Author(s):  
Jim B. Surjaatmadja ◽  
James C. Tucker

The design of high-torque, high-reduction gear reducers often requires the use of multi-stage gearing, planetary gear systems, or both. Because these systems contain many independent parts, they often become bulky. When these systems will be used in downhole oilfield equipment, compactness can become a crucial factor. Moreover, downhole oilfield equipment generally requires that areas of the system be reserved to provide some fluid flow-path around the equipment. A unique gear reducer was designed to accommodate this need for compactness. The new reducer system consists of only four gears, two of which are built as a single part. All four gears are positioned roughly concentrically within a donut-like space, and the open center accommodates fluid flow. Unlike other gear reducer systems, this system employs not only a ratio (divisional) method, but also a unique subtraction method. Consequently, a reduction of more than 2000:1 is possible. With this radical design, conventional gear teeth cannot be used if good meshing is desired. Subsequently, a special gear tooth shape was designed to provide surface contact between the teeth. With this special shape, full contact of more than 30% of the teeth can be achieved, compared to one or two teeth in standard designs. Thus, the new system also improves load-transmitting capacity. In this paper, the design of the new gear reducer is discussed in detail. A specific application in which high-pressure, sand-laden slurry is pumped through the center of this gear reducer is also discussed.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. V. D. Rao ◽  
A. C. Rao

New planetary gear trains (PGTs) are generated using graph theory. A geared kinematic chain is converted to a graph and a graph in turn is algebraically represented by a vertex-vertex adjacency matrix. Checking for isomorphism needs to be an integral part of the enumeration process of PGTs. Hamming matrix is written from the adjacency matrix, using a set of rules, which is adequate to detect isomorphism in PGTs. The present work presents the twin objectives of testing for isomorphism and compactness using the Hamming matrices and moment matrices.


Sign in / Sign up

Export Citation Format

Share Document