Velocity Field Induced by Singularities in a Reaction Turbine Fluid Filament of Varying Thickness Approximated by Hyperbolic Law

1973 ◽  
Vol 95 (1) ◽  
pp. 147-152
Author(s):  
M. N. Khan ◽  
Adarsh Swaroop ◽  
Y. V. N. Rao

The flow in a hydraulic reaction turbine can be analyzed by considering the blade surfaces to be surfaces of discontinuity. For such an analysis the velocity field induced by a system of distributed singularities (sources and vortices) is to be determined. In this paper the runner space is divided into elementary runners, assuming the absolute flow in the runner to be irrotational and the stream surfaces to be surfaces of revolution. The axisymmetric fluid filament thus obtained is then conformally mapped on to a plane. The variable thickness of the resulting plane filament is approximated by hyperbolic law. The velocity field due to a singularity is obtained by solving the governing differential equation in a closed form. The solution is extended for a chain of singularities.

1973 ◽  
Vol 8 (3) ◽  
pp. 176-181 ◽  
Author(s):  
H V Lakshminarayana ◽  
H Srinath

The stress-function equation in polar co-ordinates for thin rotating discs made of orthotropic material is generalized by assuming that the variation of thickness is radial. In order to make this equation tractable, the thickness function is assumed to be hyperbolic. The resulting governing differential equation is solved in a closed from by use of the Fourier transform technique. As a numerical example, the solution is given for annular discs. Curves are included which show the effect of anisotropy and variation of thickness on the stresses and displacements. Some limiting cases are also considered.


The propagation properties of linear wave motions in magnetic and/or velocity shears which vary in one coordinate z (say) are usually governed by a second order linear ordinary differential equation in the independent variable z. It is proved that associated with any such differential equation there always exists a quantity A which is independent of z. By employing A a measure of the intensity of the wave, this result is used to investigate the general propagation properties of hydromagnetic-gravity waves (e.g. critical level absorption, valve effects and wave amplification) in magnetic and/or velocity shears, using a full wave treatment. When variations in the basic state are included, the governing differential equation usually has more singularities than it has in the W.K.B.J. approximation, which neglects all variations in the background state. The study of a wide variety of models shows that critical level behaviour occurs only at the singularities predicted by the W.K.B.J. approximation. Although the solutions of the differential equation are necessarily singular at the irregularities whose presence is solely due to the inclusion of variations in the basic state, the intensity of the wave (as measured by A) is continuous there. Also the valve effect is found to persist whatever the relation between the wavelength of the wave and the scale of variations of the background state. In addition, it is shown that a hydromagnetic-gravity wave incident upon a finite magnetic and/or velocity shear can be amplified (or over-reflected) in the absence of any critical levels within the shear layer. In a Boussinesq fluid rotating uniformly about the vertical, wave amplification can occur if the horizontal vertically sheared flow and magnetic field are perpendicular. In a compressible isothermal fluid, on the other hand, wave amplification not only occurs in both magnetic-velocity and velocity shears but also in a magnetic shear acting alone.


Author(s):  
V Kumar ◽  
SJ Singh ◽  
VH Saran ◽  
SP Harsha

The present paper investigates the free vibration analysis for functionally graded material plates of linearly varying thickness. A non-polynomial higher order shear deformation theory is used, which is based on inverse hyperbolic shape function for the tapered FGM plate. Three different types of material gradation laws, specifically: a power (P-FGM), exponential (E-FGM), and sigmoid law (S-FGM) are used to calculate the property variation in the thickness direction of FGM plate. The variational principle has been applied to derive the governing differential equation for the plates. Non-dimensional frequencies have been evaluated by considering the semi-analytical approach viz. Galerkin-Vlasov’s method. The accuracy of the preceding formulation has been validated through numerical examples consisting of constant thickness and tapered (variable thickness) plates. The findings obtained by this method are found to be in close agreement with the published results. Parametric studies are then explored for different geometric parameters like taper ratio and boundary conditions. It is deduced that the frequency parameter is maximum for S-FGM tapered plate as compared to E- and P-FGM tapered plate. Consequently, it is concluded that the S-FGM tapered plate is suitable for those engineering structures that are subjected to huge excitations to avoid resonance conditions. In addition, it is found that the taper ratio is significantly affected by the type of constraints on the edges of the tapered FGM plate. Some novel results for FGM plate with variable thickness are also computed that can be used as benchmark results for future reference.


2016 ◽  
Vol 6 (1) ◽  
pp. 19 ◽  
Author(s):  
Ahmad Salah Edeen Nassef ◽  
Mohammed A. Dahim

<p class="1Body">This paper was investigating the buckling problem of reinforced concrete columns considering the reinforced concrete as bi – modular material. Governing differential equations was driven. The relation between the non-dimensional transverse deflection and non-dimensional distance between centroid axis and the neutral axis "eccentricity" was drawn to enable the solution of the governing differential equation. The new approach was verified with different experimental results and different codes of practice.<strong></strong></p>


1990 ◽  
Vol 112 (4) ◽  
pp. 432-437 ◽  
Author(s):  
A. V. Singh ◽  
S. Mirza

Natural frequencies and mode shapes are presented for the free axisymmetric vibration of spherical shells with linearly varying thickness along the meridian. Clamped and hinged edges corresponding to opening angles 30, 45, 60 and 90 deg have been considered in this technical brief to cover a wide range from shallow to deep spherical shells. Variations in thickness are seen to have very pronounced effects on the frequencies and mode shapes.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
P. G. Siddheshwar ◽  
A. Chan ◽  
U. S. Mahabaleswar

The paper discusses the boundary layer flow of Walters’ liquid B over a stretching sheet. The stretching is assumed to be a quadratic function of the coordinate along the direction of stretching. The study encompasses within its realm both Walters’ liquid B and second order liquid. The velocity distribution is obtained by solving the nonlinear governing differential equation. Analytical expressions are obtained for stream function and velocity components as functions of the viscoelastic and stretching related parameters. It is shown that the viscoelasticity goes hand in hand with quadratic stretching in enhancing the lifting of the liquid as we go along the sheet.


1974 ◽  
Vol 63 ◽  
pp. 47-59
Author(s):  
G. A. Tammann

A preliminary report is given of recent work with A. Sandage on the Hubble constant. Through a chain of distance indicators in Sc and Ir galaxies (cepheids, brightest stars, H iiregions, and luminosity classes) the distance scale is carried beyond any possible local anisotropy of the velocity field. Special care is taken to allow for the dependence of the intrinsic properties of the distance indicators on the size of the parent galaxy, and for the effect of the Malmquist correction. H0 is found to be 55 ± 7 km s-1 Mpc-1; within the errors no systematic changes with distance were found.A formal value of the deceleration constant q0 = 1 ± 1 was recently derived by Sandage (1972a) and Sandage and Hardy (1973). The most important correction to this value is probably the luminosity evolution of galaxies, which tends to push q0 below 0.5. The ensuing evidence for an open universe is also favored by independent arguments.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Luciano Feo ◽  
Rosa Penna

Evaluation of size effects in functionally graded elastic nanobeams is carried out by making recourse to the nonlocal continuum mechanics. The Bernoulli-Euler kinematic assumption and the Eringen nonlocal constitutive law are assumed in the formulation of the elastic equilibrium problem. An innovative methodology, characterized by a lowering in the order of governing differential equation, is adopted in the present manuscript in order to solve the boundary value problem of a nanobeam under flexure. Unlike standard treatments, a second-order differential equation of nonlocal equilibrium elastic is integrated in terms of transverse displacements and equilibrated bending moments. Benchmark examples are developed, thus providing the nonlocality effect in nanocantilever and clampled-simply supported nanobeams for selected values of the Eringen scale parameter.


1989 ◽  
Vol 111 (4) ◽  
pp. 456-458
Author(s):  
R. R. Jettappa

The determination of the shape of a rotating disk under centrifugal loading is considered. It is shown that the governing differential equation for the shape of a rotating thin disk is reducible to a linear equation of second order with variable coefficients. However, the form of this equation is such that it can be treated as an equation of first order thereby facilitating the integration by quadratures. All this is possible without any additional mathematical assumptions so that the results are exact within the limitations of the thin disk theory.


Author(s):  
M Saeidifar ◽  
S N Sadeghi ◽  
M R Saviz

The present study introduces a highly accurate numerical calculation of buckling loads for an elastic rectangular plate with variable thickness, elasticity modulus, and density in one direction. The plate has two opposite edges ( x = 0 and a) simply supported and other edges ( y = 0 and b) with various boundary conditions including simply supported, clamped, free, and beam (elastically supported). In-plane normal stresses on two opposite simply supported edges ( x = 0 and a) are not limited to any predefined mathematical equation. By assuming the transverse displacement to vary as sin( mπ x/ a), the governing partial differential equation of plate motion will reduce to an ordinary differential equation in terms of y with variable coefficients, for which an analytical solution is obtained in the form of power series (Frobenius method). Applying the boundary conditions on ( y = 0 and b) yields the problem of finding eigenvalues of a fourth-order characteristic determinant. By retaining sufficient terms in power series, accurate buckling loads for different boundary conditions will be calculated. Finally, the numerical examples have been presented and, in some cases, compared to the relevant numerical results.


Sign in / Sign up

Export Citation Format

Share Document