An Experimental and Theoretical Study of Heat Transfer in Vertical Tube Flows

1978 ◽  
Vol 100 (1) ◽  
pp. 86-91 ◽  
Author(s):  
R. Greif

An experimental and theoretical study was carried out for the heat transfer in laminar and turbulent tube flows with air and argon. Radial temperature profiles were measured at a location 108 tube diameters from the inlet of the vertical, electrically heated test section. The temperature of the tube wall was also measured. The experimental data were in good agreement with the results obtained from numerical solutions of the conservation equations and from simplified, fully developed solutions. For turbulent flows the Reynolds numbers varied from 10,000 to 19,500; for laminar flows the Reynolds numbers varied from 1850 to 2100 while the Rayleigh numbers varied from 70 to 80.

1963 ◽  
Vol 85 (2) ◽  
pp. 164-171 ◽  
Author(s):  
C. A. Depew ◽  
L. Farbar

The phenomenon of heat transfer to an air stream laden with solid spherical particles flowing up a vertical tube with constant heat flux was investigated experimentally and analytically. Two particle sizes, 30 and 200 microns in diameter, were employed. The air flow conditions were held constant at Reynolds numbers of 13,500 and 27,400 while solids were added up to gravimetric ratios of seven. The analytical treatment parallels available solutions for single-phase flow. An approximate solution was obtained under the assumption that the difference in the temperature of the two phases is small, and that the radial temperature profiles of the two phases in the fully developed region are similar. Qualitative agreement with the experimental results is obtained. Large changes in the local Nusselt number were obtained in the experiments using 30-micron particles, in contrast to small effects due to 200-micron particles.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Jian-Jun Shu ◽  
Graham Wilks

The paper considers heat transfer characteristics of thin film flow over a hot horizontal flat plate resulting from a cold vertical jet of liquid falling onto the surface. A numerical solution of high accuracy is obtained for large Reynolds numbers using the modified Keller box method. For the flat plate, solutions for axisymmetric jets are obtained. In a parallel approximation theory, an advanced polynomial approximation for the velocity and temperature distribution is employed and results are in good agreement with those obtained using a simple Pohlhausen polynomial and the numerical solutions.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


1983 ◽  
Vol 105 (4) ◽  
pp. 862-869 ◽  
Author(s):  
R. S. Amano ◽  
M. K. Jensen ◽  
P. Goel

An experimental and numerical study is reported on heat transfer in the separated flow region created by an abrupt circular pipe expansion. Heat transfer coefficients were measured along the pipe wall downstream from an expansion for three different expansion ratios of d/D = 0.195, 0.391, and 0.586 for Reynolds numbers ranging from 104 to 1.5 × 105. The results are compared with the numerical solutions obtained with the k ∼ ε turbulence model. In this computation a new finite difference scheme is developed which shows several advantages over the ordinary hybrid scheme. The study also covers the derivation of a new wall function model. Generally good agreement between the measured and the computed results is shown.


Author(s):  
Patricia Streufert ◽  
Terry X. Yan ◽  
Mahdi G. Baygloo

Local turbulent convective heat transfer from a flat plate to a circular impinging air jet is numerically investigated. The jet-to-plate distance (L/D) effect on local heat transfer is the main focus of this study. The eddy viscosity V2F turbulence model is used with a nonuniform structured mesh. Reynolds-Averaged Navier-Stokes equations (RANS) and the energy equation are solved for axisymmetric, three-dimensional flow. The numerical solutions obtained are compared with published experimental data. Four jet-to-plate distances, (L/D = 2, 4, 6 and 10) and seven Reynolds numbers (Re = 7,000, 15,000, 23,000, 50,000, 70,000, 100,000 and 120,000) were parametrically studied. Local and average heat transfer results are analyzed and correlated with Reynolds number and the jet-to-plate distance. Results show that the numerical solutions matched experimental data best at low jet-to-plate distances and lower Reynolds numbers, decreasing in ability to accurately predict the heat transfer as jet-to-plate distance and Reynolds number was increased.


2000 ◽  
Vol 123 (2) ◽  
pp. 404-407 ◽  
Author(s):  
C. Cui ◽  
X. Y. Huang ◽  
C. Y. Liu

An experimental study was conducted on the heat transfer characteristics of flow through a porous channel with discrete heat sources on the upper wall. The temperatures along the heated channel wall were measured with different heat fluxes and the local Nusselt numbers were calculated at the different Reynolds numbers. The temperature distribution of the fluid inside the channel was also measured at several points. The experimental results were compared with that predicted by an analytical model using the Green’s integral over the discrete sources, and a good agreement between the two was obtained. The experimental results confirmed that the heat transfer would be more significant at leading edges of the strip heaters and at higher Reynolds numbers.


Author(s):  
Mo Yang ◽  
Jin Wang ◽  
Kun Zhang ◽  
Ling Li ◽  
Yuwen Zhang

Detailed numerical analysis is presented for three-dimensional natural convection heat transfer in annulus with an internal concentric slotted cylinder. The internal slotted cylinder and the outer annulus are maintained at uniform but different temperatures. Governing equations are discretized using control volume technique based on staggered grid formulation and solved using SIMPLE algorithm with QUICK scheme. Flow and heat transfer characteristics are investigated for a Rayleigh number range of 10 to 106 while Prandtl number (Pr) is taken to be 0.7. The results indicate, at Rayleigh numbers below 105, the system shows two dimensional flow and heat transfer characteristics. On the other hand, the flow and heat transfer shows three dimensional characteristics while for Rayleigh numbers greater than 5×105. Comparison with experimental results indicated that the numerical solutions by three dimensional model can obtain more accuracy than the numerical solutions by two dimensional model. Besides, Numerical results show that the average equivalent conductivity coefficient of natural convection heat transfer of this problem can be enhanced by as much as 30% while relative slot width is more than 0.1.


1975 ◽  
Vol 42 (1) ◽  
pp. 51-54 ◽  
Author(s):  
N. W. Wilson ◽  
R. S. Azad

A single set of equations is developed to predict the mean flow characteristics in long circular pipes operating at laminar, transitional, and turbulent Reynolds numbers. Generally good agreement is obtained with available data in the Reynolds number range 100 < Re < 500,000.


Sign in / Sign up

Export Citation Format

Share Document