The Thermally Boosted Oil Lubricated Sliding Thrust Bearing

1974 ◽  
Vol 96 (3) ◽  
pp. 322-328 ◽  
Author(s):  
C. M. Rodkiewicz ◽  
J. C. Hinds ◽  
C. Dayson

The effect of varying the ratio of slider to pad temperature boundary conditions and the influence of varying inlet to outlet ratio of a plane infinitely wide slider bearing is examined. The lubricant is assumed to be incompressible and the variation of viscosity with temperature is taken into account. The nondimensionalized governing equations, transformed in terms of the stream function, are solved numerically. The results show that maintaining a lower slider temperature to pad temperature ratio causes an increase in the load carrying capacity of the bearing. A means of which advantage could be taken of this effect in the design of thrust bearings is suggested.

1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


1996 ◽  
Vol 118 (1) ◽  
pp. 206-214 ◽  
Author(s):  
K. T. McKeague ◽  
M. M. Khonsari

A theory for predicting the behavior of powder lubricated slider bearings based on the collisional characteristics of the grain particles and their interactions at the boundaries is presented. General boundary conditions that account for the effects of powder slippage are applied to the slider bearing configuration. Theoretical predictions are presented with comparison to published experimental measurements. An extensive parametric study is also conducted to illustrate the behavior of the flow and the response of the bearing’s load-carrying capacity and friction factor to changes in various powder material and boundary parameters.


2002 ◽  
Vol 124 (4) ◽  
pp. 874-877 ◽  
Author(s):  
Noah D. Manring ◽  
Robert E. Johnson ◽  
Harish P. Cherukuri

In this work, the operating sensitivity of the hydrostatic thrust bearing with respect to pressure-induced deformations will be studied in a stationary setting. Using the classical lubrication equations for low Reynold’s number flow, closed-form expressions are generated for describing the pressure distribution, the flow rate, and the load carrying capacity of the bearing. These expressions are developed to consider deformations of the bearing that result in either concave or convex shapes relative to a flat thrust surface. The impact of both shapes is compared, and the sensitivity of the flow rate and the load carrying capacity of the bearing with respect to the magnitude of the deformation is discussed. In summary, it is shown that all deformations increase the flow rate of the bearing and that concave deformations increase the load carrying capacity while convex deformations decrease this same quantity relative to a non-deformed bearing condition.


1974 ◽  
Vol 96 (3) ◽  
pp. 365-369 ◽  
Author(s):  
F. C. Hsing

Exact solutions for a class of incompressible spiral-grooved viscous pumps were obtained by solving the dynamic perturbation equations based on the governing equations of the well-known narrow groove theory. The resulting closed-form analytical expressions contain two integration constants which can be determined by appropriate boundary conditions pertinent to a specific application and design. A flat thrust bearing was chosen to illustrate the application of these results. The load-carrying capacity calculated from present theory was compared with those obtained by other investigator [2]. The agreement is extremely good. No attempt was made to generate design charts for various designs since the resulting expressions obtained in this work can be used quite easily in a straightforward fashion.


1962 ◽  
Vol 84 (1) ◽  
pp. 197-202 ◽  
Author(s):  
William T. Snyder

An analysis is presented of the slider bearing using an electrically conducting lubricant, such as a liquid metal, in the presence of a magnetic field. The solution permits the calculation of the load-carrying capacity of the bearing. A comparison is made with the classical slider bearing solution. It is shown that the load capacity of the bearing depends on the electromagnetic boundary conditions entering through the conductivity of the bearing surfaces. Numerical data are presented for nonconducting surfaces with the emphasis on a comparison between the classical bearing and the magnetohydrodynamic bearing characteristics. It is shown that a significant increase in load capacity is possible with liquid metal lubricants in the presence of a magnetic field.


1977 ◽  
Vol 99 (1) ◽  
pp. 89-94
Author(s):  
I. Etsion

The principle of utilizing hydrodynamic effects in diverging films for improving load capacity in gas thrust bearings is discussed. A new concept of dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and improve their efficiency.


Author(s):  
F. A. Martin

Two slide chart design aids are developed for tilting pad thrust bearings in order ( a) to give guidance on load-carrying capacity, considering such limits as allowable oil film thickness and maximum pad temperature, and ( b) to enable the designer to estimate directly the total power loss in double thrust bearing assemblies. These slide charts (each consisting of two sheets) enable variables such as pad size, number of pads, oil specification, specific load, and collar speed to be considered individually. Thus the designer has a tool from which he can obtain a ‘feel’ for bearing performance and see at a glance the interplay between all the variables.


Author(s):  
ABHIJEET PATIL ◽  
P.B. SHINDE ◽  
S.P. CHAVAN

The effect of the film shape on the load carrying capacity of a hydrodynamically lubricated bearing has not been considered an important factor in the past. Flat faced tapered bearing and the Raileigh's step bearing of constant film thickness have been the primary forms of film shapes for slider bearing studies and design data developments. There are indications in the literature that surface profiling/texturing can have significant and positive influence on the load carrying capacity of hydrodynamic pad thrust bearings. Therefore, the objective of this paper is to compare the experimental results of pressure temperature distributions in slider bearing with flat surface and with different single continuous surface profiled (Cycloidal,Catenoidal,Quadratic) sector shaped pads. Pressure results presented in this paper can provide a platform for validation of theoretical models. An experimental study has been performed to investigate the influence of single continuous surface profiled sector shaped pads in tilting pad thrust bearing. It has been found that with cycloidal shaped surface profiled sector shaped pads the pressure generated within fluid film is enhanced which in turn causes enhancement in load bearing capacity of hydrodynamic bearing.


Author(s):  
X Wang ◽  
K Kato ◽  
K Adachi

It is known the friction of self-mated SiC in water strongly depends on the roughness of their contact surfaces, and a proper running-in process is the way to obtain low friction by smoothing the contact surfaces of SiC with tribochemical wear. In this paper, the running-in process of surface-contacted SiC (thrust-bearing-type contact) in water is studied experimentally. It is found the maximum running-in load has a large influence on the load-carrying capacity, which is measured as the critical load for the transition from hydrodynamic to mixed lubrication in this research. A multi-step loading running-in method is proposed to increase the load-carrying capacity of SiC thrust bearings working in water. Finally, the running-in process of a laser textured SiC surface is studied, the effect of the pore area ratio on the roughness of the run-in surface is reported, and the mechanism of the effect of micropores is discussed.


1978 ◽  
Vol 100 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Aron Sereny ◽  
Vittorio Castelli

The method of matched asymptotic expansion is applied to obtain the pressure distribution and the load carrying capacity for an infinitely long slider bearing, operating under high-speed, low-height, with slip boundary conditions. The pressure distribution is easily applicable as the starting solution for the iterative numerical solution of Reynolds equation. Two examples given show extremely good correlation between this expansion and the numerical solution. It is shown that, for a tapered slider bearing with a bearing number above 100, the reduction in load because of slip is minimal and that, for a parabolic slider, there exists a certain unique bearing number for which the load carrying capacity is independent of the parabolic crown of the slider. It is shown that for a wide slider bearing with large bearing number, the effect of slip is on the order of 1/A.


Sign in / Sign up

Export Citation Format

Share Document