The Magnetohydrodynamic Slider Bearing

1962 ◽  
Vol 84 (1) ◽  
pp. 197-202 ◽  
Author(s):  
William T. Snyder

An analysis is presented of the slider bearing using an electrically conducting lubricant, such as a liquid metal, in the presence of a magnetic field. The solution permits the calculation of the load-carrying capacity of the bearing. A comparison is made with the classical slider bearing solution. It is shown that the load capacity of the bearing depends on the electromagnetic boundary conditions entering through the conductivity of the bearing surfaces. Numerical data are presented for nonconducting surfaces with the emphasis on a comparison between the classical bearing and the magnetohydrodynamic bearing characteristics. It is shown that a significant increase in load capacity is possible with liquid metal lubricants in the presence of a magnetic field.

1964 ◽  
Vol 86 (3) ◽  
pp. 445-448 ◽  
Author(s):  
D. C. Kuzma

An analysis of a finite journal bearing is presented for the case of an electrically conducting fluid in the presence of a radial magnetic field. The magnetohydrodynamic form of the two-dimensional Reynolds equation is derived and solved numerically for the pressure distribution. The load-carrying capacity and torque are determined from the pressure distribution. Numerical data for nonconducting bearing surfaces are compared with the data from the ordinary journal bearing. It is shown that the load-carrying capacity and torque are increased by the application of the magnetic field.


1963 ◽  
Vol 85 (3) ◽  
pp. 424-427 ◽  
Author(s):  
Dennis C. Kuzma

An analysis of an infinite journal bearing is presented for the case of an electrically conducting fluid in the presence of a magnetic field. The magnetohydrodynamic form of Reynolds’ bearing equation is derived and solved for the pressure distribution. The load carrying capacity is determined from the pressure distribution. Numerical data are presented for nonconducting bearing surfaces. These data are compared with the data from the ordinary journal bearing. It is shown that the load carrying capacity is increased by the application of a magnetic field.


1996 ◽  
Vol 118 (1) ◽  
pp. 206-214 ◽  
Author(s):  
K. T. McKeague ◽  
M. M. Khonsari

A theory for predicting the behavior of powder lubricated slider bearings based on the collisional characteristics of the grain particles and their interactions at the boundaries is presented. General boundary conditions that account for the effects of powder slippage are applied to the slider bearing configuration. Theoretical predictions are presented with comparison to published experimental measurements. An extensive parametric study is also conducted to illustrate the behavior of the flow and the response of the bearing’s load-carrying capacity and friction factor to changes in various powder material and boundary parameters.


1965 ◽  
Vol 87 (3) ◽  
pp. 778-780 ◽  
Author(s):  
D. C. Kuzma

The effect of a nonuniform applied magnetic field on the operation of a parallel plate slider bearing is investigated analytically. It is found that the optimum magnetic field profile is a step function. This profile increases the load-carrying capacity while decreasing the friction factor. Results indicate that the nonuniform applied magnetic field is definitely superior to the uniform applied magnetic field.


1974 ◽  
Vol 96 (3) ◽  
pp. 322-328 ◽  
Author(s):  
C. M. Rodkiewicz ◽  
J. C. Hinds ◽  
C. Dayson

The effect of varying the ratio of slider to pad temperature boundary conditions and the influence of varying inlet to outlet ratio of a plane infinitely wide slider bearing is examined. The lubricant is assumed to be incompressible and the variation of viscosity with temperature is taken into account. The nondimensionalized governing equations, transformed in terms of the stream function, are solved numerically. The results show that maintaining a lower slider temperature to pad temperature ratio causes an increase in the load carrying capacity of the bearing. A means of which advantage could be taken of this effect in the design of thrust bearings is suggested.


1978 ◽  
Vol 100 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Aron Sereny ◽  
Vittorio Castelli

The method of matched asymptotic expansion is applied to obtain the pressure distribution and the load carrying capacity for an infinitely long slider bearing, operating under high-speed, low-height, with slip boundary conditions. The pressure distribution is easily applicable as the starting solution for the iterative numerical solution of Reynolds equation. Two examples given show extremely good correlation between this expansion and the numerical solution. It is shown that, for a tapered slider bearing with a bearing number above 100, the reduction in load because of slip is minimal and that, for a parabolic slider, there exists a certain unique bearing number for which the load carrying capacity is independent of the parabolic crown of the slider. It is shown that for a wide slider bearing with large bearing number, the effect of slip is on the order of 1/A.


2019 ◽  
Vol 129 ◽  
pp. 1-4 ◽  
Author(s):  
Jun Cheng ◽  
Yuan Yu ◽  
Jie Guo ◽  
Shuai Wang ◽  
Shengyu Zhu ◽  
...  

2015 ◽  
Vol 813-814 ◽  
pp. 921-937
Author(s):  
P.S. Rao ◽  
Santosh Agarwal

This paper presents the theoretical study and analyzes the comparison of porous structures on the performance of a couple stress fluid based on rough slider bearing. The globular sphere model of Kozeny-Carman and Irmay’s capillary fissures model have been subjected to investigations. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The stochastically averaged Reynolds type equation has been solved under suitable boundary conditions to obtain the pressure distribution in turn which gives the expression for the load carrying capacity, frictional force and coefficient of friction. The results are illustrated by graphical representations which show that the introduction of combined porous structure with couple stress fluid results in an enhanced load carrying capacity more in the case of Kozeny-Carman model as compared to Irmay’s model.


2019 ◽  
Vol 59 (2) ◽  
pp. 144-152
Author(s):  
Mohmmadraiyan M. Munshi ◽  
Ashok R. Patel ◽  
Gunamani B. Deheri

This paper attempts to study a ferrofluid lubrication based rough sine film slider bearing with assorted porous structure using a numerical approach. The fluid flow of the system is regulated by the Neuringer-Rosensweig model. The impact of the transverse surface roughness of the system has been derived using the Christensen and Tonder model. The corresponding Reynolds’ equation has been used to calculate the pressure distribution which, in turn, has been the key to formulate the load carrying capacity equation. A graphical representation is made to demonstrate the calculated value of the load carrying capacity which is a dimensionless unit. The numbers thus derived have been used to prove that ferrofluid lubrication aids the load carrying capacity. The study suggests that the positive impact created by magnetization in the case of negatively skewed roughness helps to partially nullify the negative impact of the transverse roughness. Further investigation implies that when the Kozeny-Carman’s model is used, the overall performance is enhanced. The Kozeny-Carman’s model is a form of an empirical equation used to calculate permeability that is dependent on various parameters like pore shape, turtuosity, specific surface area and porosity. The success of the model can be accredited to its simplicity and efficiency to describe measured permeability values. The obtained equation was used to predict the permeability of fibre mat systems and of vesicular rocks.


Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


Sign in / Sign up

Export Citation Format

Share Document