A Closed-Form Numerical Algorithm for the Periodic Response of High-Speed Elastic Linkages

1979 ◽  
Vol 101 (1) ◽  
pp. 154-162 ◽  
Author(s):  
A. Midha ◽  
A. G. Erdman ◽  
D. A. Frohrib

A numerical closed-form algorithm, easily adaptable for computer simulation, is developed to solve for the periodic solutions of vibrating systems, and in particular, the high-speed elastic linkage. The algorithm is first introduced to solve the single degree-of-freedom mass-dashpot-spring system, the governing differential equation of which is a linear, second-order equation with constant coefficients. This algorithm is utilized as a basic tool and extended to solve a single degree-of-freedom mass-dashpot-spring system whose governing differential equation of motion is a linear, second-order equation with time-dependent and periodic coefficients. The system is excited by a periodic forcing function and solution is made possible by discretizing the forcing time period into a number of time intervals, the system parameters remaining constant over the duration of each interval. During each interval, the solution form is assumed to be that of the differential equation with “constant” coefficients. Constraint equations result from imposing the conditions of “compatibility” of response at the discrete time nodes and the conditions of “periodicity” of response at the end nodes of the time period. Also, the sum of the integration required is over one forcing time period only. This closed-form nature of the computational procedure results in large savings in computer time to acquire the periodic solution. The suggested numerical algorithm is then employed to solve an elastic linkage problem.

1989 ◽  
Vol 56 (2) ◽  
pp. 382-386 ◽  
Author(s):  
D. A. Dillard

Closed-form and series solutions are presented for the bending of plates bonded to a thin elastomeric foundation which is in turn bonded to a rigid substrate. The standard fourth-order governing differential equation of a classical Winkler elastic foundation becomes a sixth-order equation for the case of an incompressible foundation. Oscillation decay rates are shown to be significantly different from those of the Winkler solution due to the incompressibility of the elastomer.


1956 ◽  
Vol 60 (549) ◽  
pp. 620-621 ◽  
Author(s):  
J. P. Ellington ◽  
H. McCallion

A solution, in terms of known integrals, is obtained for the motion from rest of a machine, idealised as an undamped linear mass-spring system, when subjected to an exciting force whose frequency varies at a constant rate.In many installations of modern high speed machinery the running speed of the machine is in excess of the resonant or natural frequency of the system, and consequently starting up or stopping the machine could result in vibrations of large amplitude. The problem of assessing the magnitude and duration of these vibrations is very complicated and has been solved analytically only for the case of a single degree of freedom system excited by an oscillating force whose frequency varies linearly with time. However, even this solution is not easy to evaluate, the integrals involved demanding either graphical construction and numerical integration or summation of series.


1997 ◽  
Vol 64 (1) ◽  
pp. 227-229 ◽  
Author(s):  
M. F. Beatty

Wilms (1995) has considered the plane motion of three lineal rigid bodies subject to linear damping over their length. He shows that these plane single-degree-of-freedom systems are governed by precisely the same fundamental differential equation. It is not unusual that several dynamical systems may be formally characterized by the same differential equation, but the universal differential equation for these systems is unusual because it is exactly the same equation for the three very different systems. It is shown here that these problems belong to a more general class of problems for which the differential equation is exactly the same for every lineal rigid body regardless of its geometry.


1948 ◽  
Vol 15 (2) ◽  
pp. 125-136
Author(s):  
W. H. Hoppmann

Abstract In this paper a study is made of the problem of the central impact of a mass on a simply supported beam on an elastic foundation with considerations of internal and external damping. The differential equation for the forced vibration of the beam is developed. It is solved for the case in which the force is a function of time and is concentrated at the center of the beam. Formulas are obtained for the deflections. An expression is developed for the coefficient of restitution which is essential in determining the deflections and the strains. Criteria are devised for determining the cases in which the beam may be considered as a single-degree-of-freedom system when damping and an elastic foundation are considered. The importance of these criteria is discussed. A numerical example illustrating the theory developed in the paper is worked out in detail. Results of computations for several numerical solutions are given in tabular form.


2011 ◽  
Vol 18 (4) ◽  
pp. 579-592 ◽  
Author(s):  
T. Rodriguez-Nikl ◽  
G.A. Hegemier ◽  
F. Seible

The blast simulator at the University of California, San Diego is a unique tool for conducting full-scale testing of blast effects on structures without the use of explosive materials. This blast simulator uses high speed hydraulic actuators to launch specially designed modules toward the specimen, thereby imparting impulse in a blast-like manner. This method of testing offers numerous advantages over field tests with actual explosives, including cost, turn-around time, repeatability, and a clear view of the progression of damage in the specimen. The viability of this method is established by comparing results obtained in the blast simulator with results obtained with actual explosives. The process by which the impulse is imparted to the specimen is then described by a detailed model based on the equivalent single degree of freedom method. Impulse calculated by the model is found to be in good agreement with the experimentally recorded values. Calculated impulse is found to be relatively insensitive to assumptions made about the specimen's resistance function (often not well known before a test) implying that the model can be used with confidence in designing an experimental study.


1979 ◽  
Vol 101 (1) ◽  
pp. 138-148 ◽  
Author(s):  
A. Midha ◽  
A. G. Erdman ◽  
D. A. Frohrib

A new numerical algorithm, easily adaptable for computer simulation, is developed to approximate the transient response of a single degree-of-freedom vibrating system; governing differential equation is linear and second order with time-dependent and periodic coefficients. This is accomplished by first solving the classical linear single degree-of-freedom problem with constant coefficients. The system is excited by a periodic forcing function possessing a certain degree of smoothness. The integration terms in the solution are systematically expanded into two groups of terms: one consists of non-integral terms while the other contains only integral terms. The final integral terms are bounded. For certain combinations of frequency and damping, within the sub-resonant frequency range, the relative size of the integral terms are demonstrated to be small. The algebraic expansion (non-integral) terms then approximate the solution. The solution to a single degree-of-freedom system with time-dependent and periodic parameters is made possible by discretizing the forcing period into a number of intervals and assuming the system parameters as constant over each interval. The numerical algorithm is then employed to solve an elastic linkage problem via modal superposition. Convergence of the solution is verified by refining the number of intervals of discretization.


2019 ◽  
Vol 2 ◽  
pp. 1-5
Author(s):  
Koryo Miura

<p><strong>Abstract.</strong> The unique property of the Miura-ori map is due to the geometric property of “the single degree of freedom”. With this, one can open a map with a single pull motion. However, due to this property, the high-speed folding machine is difficult to realized. In this presentation, author investigates the natural geometric properties of Miura-ori in detail and proposes a basic concept for designing its folding machine. Though, the result does not provide a draft of a folding machine, the basics for the design parameters is beneficial for future works.</p>


Author(s):  
Abdulaziz N. Almadi ◽  
Anoop K. Dhingra ◽  
Dilip Kohli

Abstract This paper presents closed-form solutions to the displacement analysis problem of planar 8-link mechanisms with a single degree of freedom (SDOF). The degrees of I/O polynomials as well as the number of possible assembly configurations for all 71 8-link mechanisms resulting from 16 8-link kinematic chains are presented. Three numerical examples illustrating the applicability of the successive elimination procedure to the displacement analysis of 8-link mechanisms are presented. The first example deals with the determination of I/O polynomial for an 8-link mechanism containing no four-bar loops. The second and third examples, address in detail, some of the problems associated with the conversion of transcendental loop-closure equations into an algebraic form using tangent half-angle substitutions. These examples illustrate how extraneous roots can get introduced during the displacement analysis of mechanisms, and how one can derive an I/O polynomial devoid of the extraneous roots. Extensions of the proposed approach to the displacement analysis of SDOF spherical 8-link mechanisms is also presented.


2018 ◽  
Vol 147 ◽  
pp. 05003
Author(s):  
Heri Setiawan ◽  
Muslim Muin

When a ship is moving through another ship moored nearby, hydrodynamic interactions between these ships result in movements of the moored vessel. The movement may occur as surge, sway, and/or yaw. When a ship is passing a moored vessel parallelly, this effect will give a dominant lateral force on the moored ship and response from this phenomenon will appear in a certain time. Only dynamic response due to sway force is considered in this study, the sway force shall be absorb by the breasting dolphin. 40,000 DWT shall be moored to the breasting dolphin. Three passing ships size are considered, the breasting dolphin shall be modeled as a single degree of freedom model. This model will be subjected to a force caused by parallel passing ship. The model is assumed to be in a state of quiet water, this assumption is taken so that the fluid does not provide additional force on the model. The SDOF system shall be analyzed using a computer program designed to solve an ordinary differential equation.


1975 ◽  
Vol 97 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Fan Y. Chen ◽  
N. Polvanich

The dynamic response of the cam-driven mechanism is investigated for a variety of cam motion profiles. Based on a linear, lumped system model of single degree of freedom, the results of the response characteristics of the follower are presented in the form of nondimensional primary and residual shock response spectra. These spectra are also recasted in four-coordinate log-log grid forms. The extension of this approach to treat the system model of two degrees of freedom is delineated. Furthermore, the analysis of a two-freedom model of the cam-driven system was also undertaken to clarify the effects of many system parameters and for obtaining an optimal design. Fundamental design charts are presented.


Sign in / Sign up

Export Citation Format

Share Document