Nonlinear Effects on the Discontinuity Stresses in a Cylindrical Shell With a Flat Head Closure

1974 ◽  
Vol 96 (1) ◽  
pp. 44-46
Author(s):  
C. K. McDonald ◽  
R. E. McDonald

The effect of large displacements on the flexural edge stresses in thin cylindrical shells with flat head closures subjected to axisymmetric loads is considered. Results are presented which show that neglecting this nonlinear effect leads to nonconservative results. However, it is shown that these effects can usually be safely neglected except for very thin shells or for shells with a low modulus of elasticity. Curves are given which illustrate this effect for selected shell parameters.

2019 ◽  
Vol 3 (1) ◽  
pp. 46-52
Author(s):  
Nuriddin Kurbonovich Esanov ◽  

The paper deals with the free oscillations of pipelines as thin cylindrical shells with regard to internal pressure. The pipeline is presented in the form of a closed cylindrical shell with a radius of the midline of the cross section. The material is considered isotropic with density, modulus of elasticity, and Poisson’s ratio


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
JiJi Fan ◽  
Zhong-Zhi Xianyu

Abstract Light fields with spatially varying backgrounds can modulate cosmic preheating, and imprint the nonlinear effects of preheating dynamics at tiny scales on large scale fluctuations. This provides us a unique probe into the preheating era which we dub the “cosmic microscope”. We identify a distinctive effect of preheating on scalar perturbations that turns the Gaussian primordial fluctuations of a light scalar field into square waves, like a diode. The effect manifests itself as local non-Gaussianity. We present a model, “modulated partial preheating”, where this nonlinear effect is consistent with current observations and can be reached by near future cosmic probes.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Xiongtao Cao ◽  
Chao Ma ◽  
Hongxing Hua

A general method for predicting acoustic radiation from multiple periodic structures is presented and a numerical solution is proposed to find the radial displacement of thick laminated cylindrical shells with sparse cross stiffeners in the wavenumber domain. Although this method aims at the sound radiation from a single stiffened cylindrical shell, it can be easily adapted to analyze the vibrational and sound characteristics of two concentric cylindrical shells or two parallel plates with complicated periodic stiffeners, such as submarine and ship hulls. The sparse cross stiffeners are composed of two sets of parallel rings and one set of longitudinal stringers. The acoustic power of large cylindrical shells above the ring frequency is derived in the wavenumber domain on the basis of the fact that sound power is focused on the acoustic ellipse. It transpires that a great many band gaps of wave propagation in the helical wave spectra of the radial displacement for stiffened cylindrical shells are generated by the rings and stringers. The acoustic power and input power of stiffened antisymmetric laminated cylindrical shells are computed and compared. The acoustic energy conversion efficiency of the cylindrical shells is less than 10%. The axial and circumferential point forces can also produce distinct acoustic power. The radial displacement patterns of the antisymmetric cylindrical shell with fluid loadings are illustrated in the space domain. This study would help to better understand the main mechanism of acoustic radiation from stiffened laminated composite shells, which has not been adequately addressed in its companion paper (Cao et al., 2012, “Acoustic Radiation From Shear Deformable Stiffened Laminated Cylindrical Shells,” J. Sound Vib., 331(3), pp. 651-670).


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Christopher Gilles Doherty ◽  
Steve C. Southward ◽  
Andrew J. Hull

Reinforced cylindrical shells are used in numerous industries; common examples include undersea vehicles, aircraft, and industrial piping. Current models typically incorporate approximation theories to determine shell behavior, which are limited by both thickness and frequency. In addition, many applications feature coatings on the shell interior or exterior that normally have thicknesses which must also be considered. To increase the fidelity of such systems, this work develops an analytic model of an elastic cylindrical shell featuring periodically spaced ring stiffeners with a coating applied to the outer surface. There is an external fluid environment. Beginning with the equations of elasticity for a solid, spatial-domain displacement field solutions are developed incorporating unknown wave propagation coefficients. These fields are used to determine stresses at the boundaries of the shell and coating, which are then coupled with stresses from the stiffeners and fluid. The stress boundary conditions contain double-index infinite summations, which are decoupled, truncated, and recombined into a global matrix equation. The solution to this global equation results in the displacement responses of the system as well as the exterior scattered pressure field. An incident acoustic wave excitation is considered. Thin-shell reference models are used for validation, and the predicted system response to an example simulation is examined. It is shown that the reinforcing ribs and coating add significant complexity to the overall cylindrical shell model; however, the proposed approach enables the study of structural and acoustic responses of the coupled system.


Author(s):  
S. Harutyunyan ◽  
D. J. Hasanyan ◽  
R. B. Davis

Formulation is derived for buckling of the circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners acting under axial compression, lateral pressure, and/or combinations thereof, based on Sanders-Koiter theory. Buckling loads of circular cylindrical laminated composite shells are obtained using Sanders-Koiter, Love, and Donnell shell theories. These theories are compared for the variations in the stiffened cylindrical shells. To further demonstrate the shell theories for buckling load, the following particular case has been discussed: Cross-Ply with N odd (symmetric) laminated orthotropic layers. For certain cases the analytical buckling loads formula is derived for the stiffened isotropic cylindrical shell, when the ratio of the principal lamina stiffness is F = E2/E1 = 1. Due to the variations in geometrical and physical parameters in theory, meaningful general results are complicated to present. Accordingly, specific numerical examples are given to illustrate application of the proposed theory and derived analytical formulas for the buckling loads. The results derived herein are then compared to similar published work.


2006 ◽  
Vol 324-325 ◽  
pp. 523-526 ◽  
Author(s):  
Gang Chen ◽  
Qing Ping Zhang ◽  
Zhong Fu Chen ◽  
Si Zhong Li ◽  
Yu Ze Chen

Cylindrical shell is a kind of common used structure in engineering. Interest in the response of cylindrical shells to local impact loading has increased over the last few years. A structure always endures working load more or less. For a cylindrical shell, the working load commonly is internally pressure. In this paper, a numeral simulation of wedge block impact internally Pressured cylindrical shell was carried out. The dynamic failure process of the structure was obtained. The consistency between experimental observation and numerical simulation is satisfactory.


1955 ◽  
Vol 22 (1) ◽  
pp. 111-116
Author(s):  
E. H. Kennard

Abstract The strain energy in a homogeneous cylindrical shell of uniform thickness is calculated from equations obtained by Epstein’s method. The indeterminateness of the equations of equilibrium is further discussed and simplified forms of these equations and of the expressions for the stress resultants are given. Addenda and an erratum to a prior paper are included.


2013 ◽  
Vol 437 ◽  
pp. 475-480
Author(s):  
Bang Hui Yin ◽  
Min Qing Wang

The ANSYS harmonic response results are post-processed with the energy method to obtain the damping loss factor (DLF) of different types of free damping structures. Firstly, the DLF of free damping cylindrical shell in air is compared with DLF of free damping plate in air. Secondly, the DLF of free damping cylindrical shell with stiffened ribs in air is compared with that without stiffened ribs in air. Thirdly, the DLF of free damping cylindrical shell in water is compared with the DLF of free damping plate in water. Fourthly, the DLF of free damping cylindrical shell with stiffened ribs in water is compared with that without stiffened ribs in water. In the end, based on the above analysis, the backing design problem in air and water are discussed. Studies have shown that: DLF of free damping cylindrical shell is close to that of free damping plate in air; DLF of free damping cylindrical shell with stiffened ring ribs is close to that without stiffened ring ribs in air; When testing free damping cylindrical shells DLF in air, plate with the same thickness can be used as the backing; DLF of free damping plate is close to that of free damping cylindrical shell in water; DLF of free damping cylindrical shell with stiffened ring ribs is close to that without stiffened ring ribs in water; When testing free damping cylindrical shells DLF in water, plate with the same thickness can be used as the backing.


Author(s):  
U. Yuceoglu ◽  
V. O¨zerciyes

This study is concerned with the “Free Asymmetric Vibrations of Composite Full Circular Cylindrical Shells Stiffened by a Bonded Central Shell Segment.” The base shell is made of an orthotropic “full” circular cylindrical shell reinforced and/or stiffened by an adhesively bonded dissimilar, orthotropic “full” circular cylindrical shell segment. The stiffening shell segment is located at the mid-center of the composite system. The theoretical analysis is based on the “Timoshenko-Mindlin-(and Reissner) Shell Theory” which is a “First Order Shear Deformation Shell Theory (FSDST).” Thus, in both “base (or lower) shell” and in the “upper shell” segment, the transverse shear deformations and the extensional, translational and the rotary moments of inertia are taken into account in the formulation. In the very thin and linearly elastic adhesive layer, the transverse normal and shear stresses are accounted for. The sets of the dynamic equations, stress-resultant-displacement equations for both shells and the in-between adhesive layer are combined and manipulated and are finally reduced into a ”Governing System of the First Order Ordinary Differential Equations” in the “state-vector” form. This system is integrated by the “Modified Transfer Matrix Method (with Chebyshev Polynomials).” Some asymmetric mode shapes and the corresponding natural frequencies showing the effect of the “hard” and the “soft” adhesive cases are presented. Also, the parametric study of the “overlap length” (or the bonded joint length) on the natural frequencies in several modes is considered and plotted.


Sign in / Sign up

Export Citation Format

Share Document