Performance Characteristics of Spiral-Groove and Shrouded Rayleigh Step Profiles for High-Speed Noncontacting Gas Seals

1969 ◽  
Vol 91 (1) ◽  
pp. 60-68 ◽  
Author(s):  
H. S. Cheng ◽  
V. Castelli ◽  
C. Y. Chow

Current methods in gas lubrication have been used in this paper to analyze the gas-film characteristics in a high-speed, face-type gas seal. Detailed analyses are presented for two different surface geometries, the spiral-groove-orifice seal and the shrouded Rayleigh step seal. Results are presented in three parts. The first part shows the performance of a spiral-groove seal without the orifices, and also the difference in performance when the grooves are located at the high pressure, low pressure, or both sides. The second part gives typical performance of a nonparallel film profile for the spiral-groove-orifice seal as well as for the shrouded Rayleigh step seal. In the last part, a comparison is made between the two seal geometries on their tolerance to coning or dishing under a constant seal load.

Author(s):  
Nuo Sheng ◽  
Eric J. Ruggiero ◽  
Ravindra Devi ◽  
Jianping Guo ◽  
Massimiliano Cirri

Modern day turbomachinery requires the use of annular gas seals to provide flow restriction from high pressure to low pressure regions within the machine. These flow restrictions are critical design points in the overall performance of the machine and directly impact the system-level efficiency. Consequently, understanding the leakage performance of a given seal element as a function of operating pressure, rotor speed, and rotor offset is critical to the successful design of the turbomachine. In the present work, three annular gas seals are experimentally tested on a leakage test rig at GE Global Research (Niskayuna, New York). The test rig is capable of high-speed, high-pressure flow testing and has a radial degree of freedom that enables non-concentric leakage characterization. The leakage performances of a labyrinth, honeycomb and pocket damper seals are compared over a range of inlet pressures and pressure ratios. Analytical tools, including a CFD model and a Bulk Flow Code, are developed to provide leakage prediction and to establish understanding of underlying flow mechanisms. Predictions of the seal leakage are found to be in good agreement with experimental data.


2021 ◽  
Vol 263 (4) ◽  
pp. 2822-2829
Author(s):  
Minkyu KIM ◽  
Byoungha Ahn ◽  
Simwon Chin

In the outdoor unit of a room air conditioner, the main factors that made it possible to vary the ability of cooling and heating are the development of BLDC motors, advances in inverter technology, and the development of refrigerant volume control technology. The main reason for this change in cooling and heating capacity is that it is possible to change the RPS of compressors. As the range of the compressor's RPS expands, so does the range of response to load variations. This is mainly based on the capacity of the high-pressure refrigerant produced by the compressor. When the compressor rotates at high speed or low speed, the difference in noise occurs depending on the difference in rotational speed. Of course, fans and motors also contribute to noise fluctuations, but the overall governing factor is the greater contribution of refrigerant from compressors and compressors. The refrigerant flows into the cycle configured in the outdoor unit and varies in speed and flow rate depending on the amount of refrigerant. This results in vibration and noise appearing in the form of radiations, resonances, solid sounds, resonances, and so on. There are several factors that can cause vibration or noise changes depending on the flow velocity and flow rate. In this paper, we selected reactance of compressor motors, mufflers directly connected to compressor discharge ports and accumulator at compressor inlet where fluid vibrations occur the most. First of all, reactance of motor responds quickly to load fluctuations and has a large instantaneous torque to instantaneous load fluctuations. The muffler, which is directly connected to the compressor discharge port, is the first Cavity where high-pressure gas meets, and can evaluate the concentration of kinetic energy that generates noise and improve the collection center to reduce fluctuating noise. The Accumulator is the part with the lowest temperature of refrigerant gas entering the compressor, and the rapid change in the flow path causes the most fluid to generate vibration and radiation of the structure. For this reason, we select three elements first. In this paper, we specifically describe the background of selecting three elements of an air conditioning outdoor unit for the variability of noise over RPS changes. We demonstrate that these factors can review the feasibility of the experiment, explain the results of the analysis, and possibility of reduce the variation noise.


1964 ◽  
Vol 86 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Colin Rodgers

If the peak impeller and diffuser efficiencies are prescribed, it is found that the characteristics of high-speed radial compressors with straight radial blades are basically functions of the inducer and diffuser throat areas. Estimated characteristics for twenty-seven compressor geometries are presented to indicate the effects of inducer blade angle, diffuser throat to impeller inlet area ratio, and impeller tip to inducer RMS diameter ratio. The probable location of compressor surge as influenced by inducer and diffuser blade stalling is discussed, and comparisons of estimated and test compressor characteristics are given.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Ricardo Gobato ◽  
Alireza Heidari

An “explosive extratropical cyclone” is an atmospheric phenomenon that occurs when there is a very rapid drop in central atmospheric pressure. This phenomenon, with its characteristic of rapidly lowering the pressure in its interior, generates very intense winds and for this reason it is called explosive cyclone, bomb cyclone. With gusts recorded of 116 km/h, atmospheric phenomenon – “cyclone bomb” (CB) hit southern Brazil on June 30, the beginning of winter 2020, causing destruction in its influence over. One of the cities most affected was Chapecó, west of the state of Santa Catarina. The satellite images show that the CB generated a low pressure (976 mbar) inside it, generating two atmospheric currents that moved at high speed. In a northwest-southeast direction, Bolivia and Paraguay, crossing the states of Parana and Santa Catarina, and this draft that hit the south of Brazil, which caused the destruction of the affected states.  Another moving to Argentina, southwest-northeast direction, due to high area of high pressure (1022 mbar). Both enhanced the phenomenon.


Alloy Digest ◽  
2019 ◽  
Vol 68 (11) ◽  

Abstract YSS YXM4 is a cobalt-alloyed molybdenum high-speed tool steel with resistance to abrasion, seizure, and deformation under high pressure. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance. Filing Code: TS-780. Producer or source: Hitachi Metals America, Ltd.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


Sign in / Sign up

Export Citation Format

Share Document