scholarly journals Factors Influencing the Plane-Strain Crack Toughness Values of a Structural Steel

1969 ◽  
Vol 91 (3) ◽  
pp. 506-511 ◽  
Author(s):  
A. K. Shoemaker

An investigation was conducted to determine the effects of the variables; temperature, strain rate, and precracking fatigue-stress level, on plane-strain crack toughness values of a rate and temperature-sensitive steel. The crack toughness behavior of a 3/4-in-thick structural steel plate, which had a static room-temperature yield stress of 45,000 psi, was examined over the temperature range from −280 to 0 deg F for strain rates of 8 × 10−5/sec, 3 × 103/sec, and 1.5/sec. Crack toughness data, which were obtained from notched bend and single-edge-notched specimens, are presented for precracking conditions obtained at a maximum nominal fatigue stress of 25 percent and 50 percent of the room-temperature yield stress. The plane-strain crack toughness, KIc-values showed only a small sensitivity to changes in temperature and no effect due to changes in strain rate. The beginning of the transition from plane-strain to plane-stress conditions occurred at successive increases in temperature for increasing strain rate. The requirement of B > 2.5 × (KIc/σys)2 for plane-strain behavior of high-strength steels was also valid for this material when the yield stress was evaluated at the test temperature and strain rate. Increasing the fatigue-cracking stress level from 25 to 50 percent of the room-temperature nominal yield stress increased the apparent KIc-values. The data showed that a necessary condition for obtaining valid KIc-values is that the plastic-zone size which develops during fatigue cracking at room temperature must be less than that which occurs at the low temperatures and elevated strain rates of the KIc tests.

2014 ◽  
Vol 894 ◽  
pp. 125-128 ◽  
Author(s):  
Zhi Qiang Xu ◽  
Yin Zhong Shen ◽  
Bo Ji ◽  
Sheng Zhi Li ◽  
Ai Dang Shan

Serrated flow behavior of an 11Cr ferritic/martensitic steel was investigated through tensile tests at initial strain rates of 2×10-510-3 s-1 at temperatures ranging from room temperature to 973 K. Serrated flow occurred at three temperature regions of room temperature, 573 K and 773973 K when tensile tests were conducted at a strain rate of 2×10-4 s-1. Serrations are also observed in the steel during tension at temperatures of 573 K and 773973 K at a strain rate of 2×10-5 s-1. With increasing tensile temperature, the yield stress and ultimate tensile stress of the steel were gradually decreased and quickly dropped at temperatures higher than 773 K, while the elongation of the steel was decreased to a minimum at 600 K, and then dramatically increased at temperatures higher than 600 K.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744014
Author(s):  
M. Li ◽  
Q. W. Jiang

Tensile deformation behavior of ultrafine-grained (UFG) copper processed by accumulative roll-bonding (ARB) was studied under different strain rates at room temperature. It was found that the UFG copper under the strain rate of 10[Formula: see text] s[Formula: see text] led to a higher strength (higher flow stress level), flow stability (higher stress hardening rate) and fracture elongation. In the fracture surface of the sample appeared a large number of cleavage steps under the strain rate of 10[Formula: see text] s[Formula: see text], indicating a typical brittle fracture mode. When the strain rate is 10[Formula: see text] or 10[Formula: see text] s[Formula: see text], a great amount of dimples with few cleavage steps were observed, showing a transition from brittle to plastic deformation with increasing strain rate.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2012 ◽  
Vol 715-716 ◽  
pp. 164-169
Author(s):  
Bradley P. Wynne ◽  
R. Bhattacharya ◽  
Bruce Davis ◽  
W.M. Rainforth

The dynamic recrystallisation (DRX) behaviour of magnesium AZ31 is investigated using a plane strain compression (PSC) testing machine at 450°C. The variables included strain rate, double hit including intermittent anneal and double hits with different strain rate at each hit. The alloy shows higher peak stress and strain with increasing strain rates. Predominant basal texture with different intensities are observed at different strain rates. The annealing treatment between double tests leads to strong basal texture. Reversal of strain rate during double hit results in similar flow curves. This shows that in AZ31 alloy, DRX mechanism is independent of the initial microstructure and only depends on the test condition viz. temperature, strain rate and total equivalent strain.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


1944 ◽  
Vol 11 (4) ◽  
pp. A211-A218
Author(s):  
M. J. Manjoine

Abstract This paper describes the influence of rate of strain and temperature on the yield stresses of mild steel. Tensile tests are reported for room temperature, 200, 400, and 600 C, at rates of strain which vary from 10−8 to 103 per sec. The results of these tensile tests are plotted to show more clearly the effects of strain-aging on the yield stresses and ultimate stress. The comparison of the yield stress at various strain rates permits an analysis of the influence of strain. The conditions necessary for discontinuous yielding are described and compared with test experiences.


1976 ◽  
Vol 11 (1) ◽  
pp. 26-31 ◽  
Author(s):  
L E Farmer ◽  
P L B Oxley

A method of calculating strain-rates and strains from an experimental flow field is developed using simple geometry with polynomials used to represent small segments of the experimental streamlines and the corresponding distance/time along streamline curves. The method is applied to an experimental flow field for plane strain extrusion obtained using printed grids (0.002 inch square), the input to the computer program being the co-ordinates of the grid intersection points and the punch velocity.


2008 ◽  
Vol 580-582 ◽  
pp. 299-302 ◽  
Author(s):  
Kunitaka Masaki ◽  
Yutaka S. Sato ◽  
Masakatsu Maeda ◽  
Hiroyuki Kokawa

Friction stir welding (FSW) makes the stir zone with fine recrystallized grain structure. The recrystallized grains would be formed through dynamic recrystallization at high temperatures and high strain-rate. The present study experimentally simulated the dynamically recrystallized microstructure of a friction stir welded Al alloy 1050 produced at 600 rpm rotation and 100 mm/min travel speed, using combination of the plane-strain compression at various strain rates and the subsequent cooling along the cooling cycle of FSW. The equiaxed grain structures similar to the microstructure of the stir zone were produced at strain rates between 0.1 and 32 s-1; the grain size decreased with increasing strain rate. Strain rate during the FSW could be estimated to be about 1.8 s-1. The present study suggests that plane-strain compression test can simulate the recrystallized grain structure of the friction stir welds.


1980 ◽  
Vol 15 (4) ◽  
pp. 201-207 ◽  
Author(s):  
M S J Hashmi

Experimental results on a mild steel are reported from ballistics tests which gave rise to strain rates of up to 105 s−1. A finite-difference numerical technique which incorporates material inertia, elastic-strain hardening and strain-rate sensitivity is used to establish the strain-rate sensitivity constants p and D in the equation, σ4 = σ1 (1+(∊/D)1/ p). The rate sensitivity established in this study is compared with those reported by other researchers.


1994 ◽  
Vol 364 ◽  
Author(s):  
S. S. Ezz ◽  
Y. Q. Sun ◽  
P. B. Hirsch

AbstractThe strain rate sensitivity ß of the flow stress τ is associated with workhardening and β=(δτ/δln ε) is proportional to the workhardening increment τh = τ - τy, where τy is the strain rate independent yield stress. The temperature dependence of β/τh reflects changes in the rate controlling mechanism. At intermediate and high temperatures, the hardening correlates with the density of [101] dislocations on (010). The nature of the local obstacles at room temperature is not established.


Sign in / Sign up

Export Citation Format

Share Document