Vehicle Vibration Analysis Using Frequency Domain Techniques

1969 ◽  
Vol 91 (4) ◽  
pp. 1075-1080 ◽  
Author(s):  
W. F. Lins

This paper describes a method of determining and evaluating vehicle vibration through frequency-response functions. Human transfer functions and absorbed power are used to investigate the effects of vibration on the human being. The advantages and limitations of frequency domain analysis in contrast to vehicle simulation in the time domain are discussed. A test case showing a series of computer simulations using both techniques is presented, and a comparison of the results is made.

Author(s):  
Silvio Sorrentino ◽  
Luigi Garibaldi

This paper presents a study of the frequency domain behaviour of a single degree of freedom (SDOF) system with a fractional derivative model, named Fractional Kelvin-Voigt. Frequency response functions (FRFs) as receptance and transmissibility are analytically studied. Then the model is applied to describe the dynamic behaviour of a magneto-mechanic system in the frequency domain, consisting of a body of para or dia-magnetic material vibrating in a field created by a pair of magnets.


1994 ◽  
Vol 116 (4) ◽  
pp. 781-786 ◽  
Author(s):  
C. J. Goh

The convergence of learning control is traditionally analyzed in the time domain. This is because a finite planning horizon is often assumed and the analysis in time domain can be extended to time-varying and nonlinear systems. For linear time-invariant (LTI) systems with infinite planning horizon, however, we show that simple frequency domain techniques can be used to quickly derive several interesting results not amenable to time-domain analysis, such as predicting the rate of convergence or the design of optimum learning control law. We explain a paradox arising from applying the finite time convergence criterion to the infinite time learning control problem, and propose the use of current error feedback for controlling possibly unstable systems.


Author(s):  
W Borutzky ◽  
J Granda

Multidisciplinary systems are described most suitably by bond graphs. In order to determine unnormalized frequency domain sensitivities in symbolic form, this paper proposes to construct in a systematic manner a bond graph from another bond graph, which is called the associated incremental bond graph in this paper. Contrary to other approaches reported in the literature the variables at the bonds of the incremental bond graph are not sensitivities but variations (incremental changes) in the power variables from their nominal values due to parameter changes. Thus their product is power. For linear elements their corresponding model in the incremental bond graph also has a linear characteristic. By deriving the system equations in symbolic state space form from the incremental bond graph in the same way as they are derived from the initial bond graph, the sensitivity matrix of the system can be set up in symbolic form. Its entries are transfer functions depending on the nominal parameter values and on the nominal states and the inputs of the original model. The sensitivities can be determined automatically by the bond graph preprocessor CAMP-G and the widely used program MATLAB together with the Symbolic Toolbox for symbolic mathematical calculation. No particular program is needed for the approach proposed. The initial bond graph model may be non-linear and may contain controlled sources and multiport elements. In that case the sensitivity model is linear time variant and must be solved in the time domain. The rationale and the generality of the proposed approach are presented. For illustration purposes a mechatronic example system, a load positioned by a constant-excitation d.c. motor, is presented and sensitivities are determined in symbolic form by means of CAMP-G/MATLAB.


Author(s):  
Bonjun Koo ◽  
Jang Whan Kim

The Extendable Draft Platform (EDP) is a deep draft, column stabilized platform with a deck box support for topsides and a single, deep draft heave plate that provides suitable motion characteristics to enable the use of dry tree top tensioned risers. The EDP can be fabricated with topsides installed on the deck box and commissioned quayside in a typical construction yard. With the columns in the retracted position, the EDP floats on its deck box and can be towed, in this configuration, to the location of interest. Once the EDP is transported to its final site, the columns and heave plate are lowered to their final operating draft. During the lowering sequence, the deck box and the lower hull become two relatively independent bodies, mechanically connected by chains that control the lowering of the columns and heave plate, and the guides between the deck box and the columns. This multi-body system is hydrodynamically coupled because of radiated and diffracted waves. The global performance analyses of the installation process (lowering of the lower hull) are carried out by three different methods. The first method is frequency-domain analysis by WAMIT and a frequency domain motion solver. In the frequency domain analysis, all the mechanical connections are modeled as linear springs. The second method is time-domain, partially coupled analysis using HARP/WINPOST. In this analysis, the off diagonal 6×6 hydrodynamic interactions are ignored. The last method is a time domain, fully coupled analysis using HARP/WINPOST. In this analysis, full 12×12 hydrodynamic interactions are considered. In the time domain analyses, the mechanical couplings between each column and deck box are modeled with linear springs and the chain connections are modeled with slender rods by using the nonlinear finite element method. This paper presents and compares analysis results based on the three methods for relative motions and loads between the deck box and the lower hull during the lowering of the columns and heave plate.


2015 ◽  
Vol 31 (5) ◽  
pp. 292-308 ◽  
Author(s):  
Jianhua Wu ◽  
Toyin Ajisafe ◽  
Matthew Beerse

This study used both time and frequency domain analyses to investigate walking patterns with ankle load in children and adults. Twenty-two children aged 7–10 years and 20 young adults participated in this study. Three levels of ankle load were manipulated: no load, low load (2% of body mass on each side), and high load (4% of body mass on each side). An instrumented treadmill was used to register vertical ground reaction force (GRF) and spatiotemporal parameters, and peak vertical GRFs were determined. A frequency domain analysis was conducted on the vertical GRF data. Results demonstrate that, in the time domain, children showed adult-like spatiotemporal parameters and adult-like timing and magnitude of the 2 peak vertical GRFs under each load. In the frequency domain, children produced a lower power from the second harmonic than young adults, although both groups showed the highest power from this harmonic and increased this power with ankle load. It was concluded that children aged 7–10 years may start showing adult-like neuromuscular adaptations to increasing ankle load and display similar spatiotemporal control of foot falls and foot–floor kinetic interaction; however, a frequency domain analysis is effective in revealing different kinetic and neuromuscular characteristics between children and adults.


2020 ◽  
Author(s):  
Keno L. Krewer ◽  
Mischa Bonn

AbstractDifficulties assessing and predicting the current outbreak of the severe acute respiratory syndrome coronavirus 2 can be traced, in part, to the limitations of a static description of a dynamic system. Fourier transforming the time-domain data of infections and fatalities into the frequency domain makes the dynamics easily accessible. Defining a quantity like the “case fatality” as a spectral density allows a more sensible comparison between different countries and demographics during an ongoing outbreak. Such a case fatality informs not only how many of the confirmed cases end up as fatalities, but also when. For COVID-19, knowing this time and using the entire case fatality spectrum allows determining that an outbreak had entered a steady-state (most likely its end) about 14 days before this is obvious from time-domain data. The lag between confirmations and deaths also helps to estimate the effectiveness of contact management: The larger the lag, the less time the average confirmed person had to infect people before quarantine.


2020 ◽  
Vol 12 (09) ◽  
pp. 2050103
Author(s):  
Alvin Maningding ◽  
Mojtaba Azadi

The force response of poroelastic materials including poroelastic gels to indentation is known to be time- and space-dependent (i.e., a function of indenter shape and size). Despite the complexity of the poroelastic response and in contrast to viscoelastic mechanics, poroelastic mechanics can be captured in terms of several intrinsic mechanical properties, such as elasticity, permeability, and Poisson ratio. While these intrinsic properties can be found from time-domain or frequency-domain master curves, indentation is usually conducted and analyzed only in the time domain using stress-relaxation or creep experiments. This paper advocates using frequency-domain analysis of poroelastic gels by reviewing and analyzing the relevant works of the literature. The analysis and methods, proposed here, enable researchers to characterize dynamic moduli of poroelastic gels in frequency domain using only a few experimental defining parameters. The authors have intentionally provided extensive details and background, to make this work useful for researchers who consider using frequency-domain analysis for the first time. This work reviews and explains the instantaneous elastic modulus, depicted over normalized time as a unifying and understandable set of master curves for time-domain stress relaxation tests on poroelastic gels for cylindrical, conical, and spherical indenters. The dynamic elastic modulus, depicted over normalized frequency, are derived symbolically and numerically and explained for the first time as master curves with simple transfer function in the frequency domain for presenting poroelastic mechanics of gels.


Author(s):  
Fushun Liu ◽  
Lei Jin ◽  
Jiefeng Chen ◽  
Wei Li

Numerical time- or frequency-domain techniques can be used to analyze motion responses of a floating structure in waves. Time-domain simulations of a linear transient or nonlinear system usually involve a convolution terms and are computationally demanding, and frequency-domain models are usually limited to steady-state responses. Recent research efforts have focused on improving model efficiency by approximating and replacing the convolution term in the time domain simulation. Contrary to existed techniques, this paper will utilize and extend a more novel method to the frequency response estimation of floating structures. This approach represents the convolution terms, which are associated with fluid memory effects, with a series of poles and corresponding residues in Laplace domain, based on the estimated frequency-dependent added mass and damping of the structure. The advantage of this approach is that the frequency-dependent motion equations in the time domain can then be transformed into Laplace domain without requiring Laplace-domain expressions of the added mass and damping. Two examples are employed to investigate the approach: The first is an analytical added mass and damping, which satisfies all the properties of convolution terms in time and frequency domains simultaneously. This demonstrates the accuracy of the new form of the retardation functions; secondly, a numerical six degrees of freedom model is employed to study its application to estimate the response of a floating structure. The key conclusions are: (1) the proposed pole-residue form can be used to consider the fluid memory effects; and (2) responses are in good agreement with traditional frequency-domain techniques.


1999 ◽  
Vol 121 (3) ◽  
pp. 451-457 ◽  
Author(s):  
C. Evans ◽  
A. Borrell ◽  
D. Rees

The frequency-domain identification of gas turbine dynamics is discussed. Models are directly estimated from engine data and used to validate linearized thermodynamic models derived from the engine physics. This work is motivated by the problems previously encountered when using time-domain methods. A brief overview of frequency-domain techniques is presented and the design of appropriate multisine test signals is discussed. Practical results are presented for the modelling of the fuel feed to shaft speed dynamics of a twin-spool engine. The gathered data are analyzed and the frequency response functions of the engine are estimated. The identification of parametric s-domain models is discussed in detail and a comparison made between the identified models and the linearized thermodynamic models. The influence of engine nonlinearities on the linear models is also examined.


Sign in / Sign up

Export Citation Format

Share Document