Simplification of Hydraulic Line Dynamics by Use of Infinite Products

1964 ◽  
Vol 86 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Rufus Oldenburger ◽  
R. E. Goodson

In many hydraulic control and other systems the effect of fluid carrying lines is an important factor in system dynamics. Following electrical transmission line technique a hydraulic line between two cross sections is characterized by a four-terminal network with pressure and flow the interacting variables. Use of this four-terminal network in a variety of system problems leads to transfer functions relating pairs of variables in the system, where these transfer functions are transcendental. These transfer functions cause serious mathematical difficulties when employed for the computation of system transients. The standard mathematical technique of using power series expansions fails in that this yields instability in most applications where this instability does not actually occur. In this paper these difficulties are overcome by writing these functions as quotients of infinite products of linear factors. It is shown that it is necessary to keep only a few of these factors to compute transients accurately. The transfer functions are thus replaced by rational approximations. However, in contrast to the classical lumped constant approach to distributed systems the accuracy of the approximation can be seen from the factors directly, facilitating system analysis and synthesis. The technique applies to electrical transmission lines as well as hydraulic pipes. This method yields a technique for automatically smoothing stepwise transient responses obtained in water hammer studies. Good agreement has been obtained between theory and experiment on the four terminal hydraulic network approach. The paper covers the results of the experiments made in the United States to verify the theory.

1964 ◽  
Vol 86 (3) ◽  
pp. 589-598 ◽  
Author(s):  
A. F. D’Souza ◽  
R. Oldenburger

The use of hydraulic transmission lines in automatic control, liquid-propellant rocket, and other systems requires accurate knowledge of their dynamic response. In this paper the effects of fluid viscosity and compressibility are included to derive transfer functions relating the pressure and velocity variables at the two cross sections of a line. The results of theoretical analysis are compared with experimental data obtained from frequency-response tests. The analysis includes the significant effect on the dynamic response caused by the natural frequency of vibration of the line in the longitudinal direction. It is shown that in small-diameter lines the viscous effects cannot be neglected. The theoretical analysis may be used to improve the performance of systems incorporating hydraulic networks.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1626-1651
Author(s):  
John E Lens M.EERI ◽  
Mandar M Dewoolkar ◽  
Eric M Hernandez M.EERI

This article describes the approach, methods, and findings of a quantitative analysis of the seismic vulnerability in low-to-moderate seismic hazard regions of the Central and Eastern United States for system-wide assessment of typical multiple span bridges built in the 1950s through the 1960s. There is no national database on the status of seismic vulnerability of bridges, and thus no means to estimate the system-wide damage and retrofit costs for bridges. The study involved 380 nonlinear analyses using actual time-history records matched to four representative low-to-medium hazard target spectra corresponding with peak ground accelerations from approximately 0.06 to 0.3 g. Ground motions were obtained from soft and stiff site seismic classification locations and applied to models of four typical multiple-girder with concrete bent bridges. Multiple-girder bridges are the largest single category, comprising 55% of all multiple span bridges in the United States. Aging and deterioration effects were accounted for using reduced cross-sections representing fully spalled conditions and compared with pristine condition results. The research results indicate that there is an overall low likelihood of significant seismic damage to these typical bridges in such regions, with the caveat that certain bridge features such as more extensive deterioration, large skews, and varied bent heights require bridge-specific analysis. The analysis also excludes potential damage resulting from liquefaction, flow-spreading, or abutment slumping due to weak foundation or abutment soils.


1983 ◽  
Vol 61 (9) ◽  
pp. 2097-2103 ◽  
Author(s):  
Yezid Gutierrez

A study of morphological characteristics in cross sections of Dirofilaria subdermata adults from the subcutaneous tissues of the Canadian porcupine (Erethizon dorsatum) is reported. A useful diagnostic feature which differentiates D. subdermata from a closely related filarid, D. ursi, occurring in bears, was found to be the number of longitudinal ridges. The relevance of these findings are discussed in relation to the human subcutaneous infections found in the United States and Canadian border states and provinces with D. ursi.


Author(s):  
Devin O. O’Dowd ◽  
Aaron R. Byerley

This paper presents a practical approach to designing a gas turbine nozzle with the help of the Aircraft Engine Design textbook as well as the software program Nozzle, a subprogram within the Aircraft Engine Design System Analysis Software suite AEDsys. The current textbook and software allow for a variable wetted length of the converging and diverging nozzle sections. Critical feedback from industry experts has inspired an attempt to design a nozzle with fixed wetted material lengths. This paper is written to augment classroom treatment, but will also support others who use the Aircraft Engine Design text and software for a preliminary engine design capstone. This approach is further guided by the actual scaling of the Pratt & Whitney F100 variable geometry converging-diverging nozzle, where wetted lengths are fixed. The chief goal is to equip students at the United States Air Force Academy with a refined approach that is more realistic of a manufactured nozzle design, producing a graphical representation of a nozzle schedule at different speed and altitude flight conditions, both with and without afterburner.


Author(s):  
CH. CHENGAIAH ◽  
R.V.S. SATYANARAYANA ◽  
G.V. MARUTHESWAR MARUTHESWAR

The power transfer capability of electric transmission lines are usually limited by large signals ability. Economic factors such as the high cost of long lines and revenue from the delivery of additional power gives strong intensive to explore all economically and technically feasible means of raising the stability limit. On the other hand, the development of effective ways to use transmission systems at their maximum thermal capability. Fast progression in the field of power electronics has already started to influence the power industry. This is one direct out come of the concept of FACTS aspects, which has become feasible due to the improvement realized in power electronic devices in principle the FACTS devices should provide fast control of active and reactive power through a transmission line. The UPFC is a member of the FACTS family with very attractive features. This device can independently control many parameters. This device offers an alternative mean to mitigate transmission system oscillations. It is an important question is the selection of the input signals and the adopted control strategy for this device in order to damp power oscillations in an effective and robust manner. The UPFC parameters can be controlled in order to achieve the maximal desire effect in solving first swing stability problem. This problem appears for bulky power transmission systems with long transmission lines. In this paper a MATLAB Simulink Model is considered with UPFC device to evaluate the performance of Electrical Transmission System of 22 kV and 33kV lines. In the simulation study, the UPFC facilitates the real time control and dynamic compensation of AC transmission system. The dynamic simulation is carried out in conjunction with the N-R power flow solution sequence. The updated voltages at each N-R iterative step are interpreted as dynamic variables. The relevant variables are input to the UPFC controllers.


Sign in / Sign up

Export Citation Format

Share Document