Inverse Determination of Eroded Smelter Wall Thickness Variation Using an Elastic Membrane Concept

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Daniel Baker ◽  
George S. Dulikravich ◽  
Brian H. Dennis ◽  
Thomas J. Martin

A novel algorithm has been developed for the nondestructive determination of the shape of the interface between a melt and a refractory material wall in smelter furnaces. This method uses measurements of temperature and heat flux at a number of points on the outer surface of the furnace, and assumes that the inner (guessed) surface of the furnace wall is isothermal. The temperature field is then predicted in the entire furnace wall material by numerically solving a steady state heat conduction equation subject to the measured temperature values on the external surface and the isothermal melt material solidus temperature on the inner surface of the wall. The byproduct of this analysis is the computed heat flux on the external surface. The difference between the measured and the computed heat fluxes on the outer surface of the furnace is then used as a forcing function in an elastic membrane motion concept to determine perturbations to the inner (melt-refractory) surface motion. The inverse determination of the melt-refractory interface shape can be achieved by utilizing this algorithm and any available analysis software for the temperature field in the refractory wall. The initial guess of the inner shape of the wall can be significantly different from the final (unknown) wall shape. The entire wall shape determination procedure requires typically 5–15 temperature field analyses in the furnace wall material.

Author(s):  
Daniel P. Baker ◽  
George S. Dulikravich ◽  
Brian H. Dennis ◽  
Thomas J. Martin

A novel algorithm has been developed for the non-destructive determination of the shape of the interface between a melt and a refractory material wall in smelter furnaces. This method uses measurements of temperature and heat flux at a number of points on the outer surface of the furnace and assumes that the inner (guessed) surface of the furnace wall is isothermal. The temperature field is then predicted in the entire furnace wall material by numerically solving a steady state heat conduction equation subject to the measured temperature values on the external surface and the isothermal melt material solidus temperature on the inner surface of the wall. The byproduct of this analysis is the computed heat flux on the external surface. The shape determination method then uses the difference between the measured and the computed heat fluxes on the outer surface of the furnace as a forcing function in an elastic membrane motion concept for the determination of the inner (melt-refractory) surface motion. The inverse determination of the melt-refractory interface shape can be achieved by utilizing this algorithm and any available analysis software for temperature field in the refractory wall. The initial guess of the wall inner shape can be significantly different from the final (unknown) wall shape. The entire wall shape determination procedure requires typically 5–15 temperature field analysis in the furnace wall material.


Author(s):  
Oleksandr Hachkevych ◽  
Mykola Hachkevyc ◽  
Adrian Torskyy ◽  
Valentyn Mozharovskyy

A mathematical model for determining the temperature in a two - layer shell under convective heating and heat sources is constructed. The temperature field for a two-layer shell thermally insulated on the inner surface, which is heated by temperature from the outer surface, is considered.


Author(s):  
B.A. Lapshinov ◽  
◽  
N.I. Timchenko ◽  

Spectral pyrometry was used to determine the surface temperature distribution of Si, Nb, Cu, and graphite samples when they were locally heated by continuous radiation of an Nd:YAG laser (λ = 1.064 μm). With prolonged exposure to radiation, a stationary temperature field was established in the samples. The thermal spectra were recorded with a small spectrometer in the visible range in the temperature range above 850 K. The optical fiber used to transmit the radiation spectrum to the spectrometer had an additional diaphragm with a diameter of 1 mm located at a certain distance from the fiber end, which ensured the locality of the recorded spectra. The optical fiber moved continuously along the sample, and the spectrometer recorded up to 100 spectra with a frequency of 5-10 Hz. The temperature profile of the samples was calculated based on the results of processing the spectra using the Spectral Pyrometry program.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
David T. W. Lin ◽  
Hung Yi Li ◽  
Wei Mon Yan

An inverse solution scheme based on the conjugate gradient method with the minimization of the object function is presented for estimating the unknown wall heat flux of conjugated forced convection flows between two corotating disks from temperature measurements acquired within the flow field. The validity of the proposed approach is demonstrated via the estimation of three time- and space-dependent heat flux profiles. A good agreement is observed between the estimated results and the exact solution in every case. In general, the accuracy of the estimated results is found to improve as the temperature sensors are moved closer to the unknown boundary surface and the error in the measured temperature data is reduced.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
Asif Ali ◽  
Lorenzo Cocchi ◽  
Alessio Picchi ◽  
Bruno Facchini

The scope of this work was to develop a technique based on the regression method and apply it on a real cooled geometry for measuring its internal heat transfer distribution. The proposed methodology is based upon an already available literature approach. For implementation of the methodology, the geometry is initially heated to a known steady temperature, followed by thermal transient, induced by injection of ambient air to its internal cooling system. During the thermal transient, external surface temperature of the geometry is recorded with the help of infrared camera. Then, a numerical procedure based upon a series of transient finite element analyses of the geometry is applied by using the obtained experimental data. The total test duration is divided into time steps, during which the heat flux on the internal surface is iteratively updated to target the measured external surface temperature. The final procured heat flux and internal surface temperature data of each time step is used to find the convective heat transfer coefficient via linear regression. This methodology is successfully implemented on three geometries: a circular duct, a blade with U-bend internal channel, and a cooled high pressure vane of real engine, with the help of a test rig developed at the University of Florence, Italy. The results are compared with the ones retrieved with similar approach available in the open literature, and the pros and cons of both methodologies are discussed in detail for each geometry.


2020 ◽  
Vol 1006 ◽  
pp. 93-100
Author(s):  
Vadym Nizhnyk ◽  
Yurii Feshchuk ◽  
Volodymyr Borovykov

Based on analysis of appropriate literary sources we established that estimation of fire separation distances was based of two criteria: heat flux and temperature. We proposed to use “ignition temperature of materials” as principal criterion when determining fire separation distances between adjacent construction facilities. Based on the results derived while performing complete factorial we created mathematical model to describe trend of changing fire separation distances depending on caloric power of fire load (Q), openings factor of the external enclosing structures (k) and duration of irradiation (t); moreover, its adequacy was confirmed. Based on linear regression equations we substantiated calculation and tabular method for the determination of fire separation distances for a facility being irradiated which contains combustible or otherwise non-combustible façade and a facility where liquid oil products turn. We developed and proposed general methodology for estimation of fire separation distances between construction facilities by calculation.


2005 ◽  
Author(s):  
Andrew C. Miner ◽  
Uttam Ghoshal

The illumination of a sample when imaged by thermoreflectance thermal microscopy may cause significant heating of the surface. Nonlinearities in the performance of the system being imaged may lead to large measurement induced errors in the observed temperature field. Analytical expressions are presented to estimate the temperature rise and heat flux in a sample. Spatially filtered thermo-reflectance microscopy is introduced as a technique to significantly reduce the incident heat flux without loss of spatial resolution.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


Sign in / Sign up

Export Citation Format

Share Document