Design and Test of Carbon Nanotube Biwick Structure for High-Heat-Flux Phase Change Heat Transfer

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Qingjun Cai ◽  
Chung-Lung Chen

With the increase in power consumption in compact electronic devices, passive heat transfer cooling technologies with high-heat-flux characteristics are highly desired in microelectronic industries. Carbon nanotube (CNT) clusters have high thermal conductivity, nanopore size, and large porosity and can be used as wick structure in a heat pipe heatspreader to provide high capillary force for high-heat-flux thermal management. This paper reports investigations of high-heat-flux cooling of the CNT biwick structure, associated with the development of a reliable thermometer and high performance heater. The thermometer/heater is a 100-nm-thick and 600 μm wide Z-shaped platinum wire resistor, fabricated on a thermally oxidized silicon substrate of a CNT sample to heat a 2×2 mm2 wick area. As a heater, it provides a direct heating effect without a thermal interface and is capable of high-temperature operation over 800°C. As a thermometer, reliable temperature measurement is achieved by calibrating the resistance variation versus temperature after the annealing process is applied. The thermally oxidized layer on the silicon substrate is around 1-μm-thick and pinhole-free, which ensures the platinum thermometer/heater from the severe CNT growth environments without any electrical leakage. For high-heat-flux cooling, the CNT biwick structure is composed of 250 μm tall and 100 μm wide stripelike CNT clusters with 50 μm stripe-spacers. Using 1×1 cm2 CNT biwick samples, experiments are completed in both open and saturated environments. Experimental results demonstrate 600 W/cm2 heat transfer capacity and good thermal and mass transport characteristics in the nanolevel porous media.

Author(s):  
Qingjun Cai ◽  
Yuan Zhao ◽  
Chialun Tsai ◽  
Chung-lung Chen

With the increase of power consumption in compact electronic devices, passive heat transfer cooling technologies with high heat flux characteristics are highly desired in microelectronics industries. Carbon nanotube (CNT) cluster/forest has high effective thermal conductivity, nano pore size and large porosity, which can be used as wick structure in a heat pipe heatspreader and provides high capillary force for high heat flux thermal management. In this research, investigations of high heat flux cooling of the CNT bi-wick structure are associated with the development of a reliable thermometer and high performance/interface free heater. A 100nm thick and 600μm wide Z-shaped platinum wire resistor is fabricated on the backside of a CNT sample substrate to heat a 2×2mm2 wick area. As a heater, it provides direct heating effect without thermal interface and is capable of over 800°C high temperature operation. As a thermometer, reliable temperature measurement is achieved by calibrating the resistance variation with temperature after the annealing process is applied. The CNT sample substrate is silicon. The backside of the silicon substrate is thermally oxidized to create a 2μm thick and pinhole-free SiO2 layer so that the platinum heater and thermometer can survive from the server CNT growth environments and without any electrical leakage. For high heat flux cooling, the CNT bi-wick structure is composed of 250μm tall, 100μm wide stripe-like CNT clusters and 50μm empty space. Using 1×1cm2 CNT bi-wick samples, experiments are completed in both the open and saturated environments. Testing results of CNT bi-wick structure demonstrate 600W/cm2 heat transfer capacity and good thermal & mass transport characteristics in the nano level porous media.


Author(s):  
Akira Matsui ◽  
Kazuhisa Yuki ◽  
Hidetoshi Hashizume

Detailed heat transfer characteristics of particle-sintered porous media and metal foams are evaluated to specify the important structural parameters suitable for high heat removal. The porous media used in this experiment are particle-sintered porous media made of bronze and SUS316L, and metal foams made of copper and nickel. Cooling water flows into the porous medium opposite to heat flux input loaded by a plasma arcjet. The result indicates that the bronze-particle porous medium of 100μm in pore size shows the highest performance and achieves heat transfer coefficient of 0.035MW/m2K at inlet heat flux 4.6MW/m2. Compared with the heat transfer performance of copper fiber-sintered porous media, the bronze particlesintered ones give lower heat transfer coefficient. However, the stable cooling conditions that the heat transfer coefficient does not depend on the flow velocity, were confirmed even at heat flux of 4.6MW/m2 in case of the bronze particle-sintered media, while not in the case of the copper-fiber sintered media. This signifies the possibility that the bronze-particle sintered media enable much higher heat flux removal of over 10MW/m2, which could be caused by higher permeability of the particle-sintered pore structures. Porous media with high permeability provide high performance of vapor evacuation, which leads to more stable heat removal even under extremely high heat flux. On the other hand, the heat transfer coefficient of the metal foams becomes lower because of the lower capillary and fin effects caused by too high porosity and low effective thermal conductivity. It is concluded that the pore structure having high performance of vapor evacuation as well as the high capillary and high fin effects is appropriate for extremely high heat flux removal of over 10MW/m2.


Author(s):  
Qingjun Cai ◽  
Chung-Lung Chen ◽  
Guangyong Xiong ◽  
Zhifeng Ren

Multiwall carbon nanotube (MCNT) has high thermal conductivity, nano size pores and high capillary pressure. All these physical properties make it an ideal candidate as a wick structure in a micro sized heat pipe/spreader. In this paper, experimental investigations evaluate heat transfer performance of the carbon nanotube (CNT) wick and demonstrate its ability to handle high heat flux cooling. The CNT wick structure used for high heat flux experiments employs the bi-wick structure design to overcome high flow resistance in CNT clusters. The wick fabrication technique integrates both microelectromechanical systems (MEMS) patterning and thermal chemical vapor deposition (CVD) CNT growth processes. In high heat flux experiments, the CNT cluster functions as the first order wick structure and provides a large capillary force. The spacing among CNT clusters acts as the second order wick structure thus setting up low resistance liquid supply channels and vapor ventilation paths. Preliminary experiments are conducted in an open chamber system with vertical CNT bi-wick sample setup. Heat flux, as high as 400W/cm2, is demonstrated over 0.16mm2 heating area. Dryout was not observed, whereas the heater soft-bonding material fails at the higher testing heat flux. The experimental results indicate that the CNT bi-wick structure is capable of high heat flux cooling and promises to be the heat transfer element in new generation microelectronics cooling systems.


1998 ◽  
Vol 35 (9) ◽  
pp. 671-678 ◽  
Author(s):  
Md. Shafiqul ISLAM ◽  
Ryutaro HINO ◽  
Katsuhiro HAGA ◽  
Masanori MONDE ◽  
Yukio SUDO

Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Sign in / Sign up

Export Citation Format

Share Document