Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
P. Schuepbach ◽  
R. S. Abhari ◽  
M. G. Rose ◽  
T. Germain ◽  
I. Raab ◽  
...  

In high-pressure turbines, a small amount of air is ejected at the hub rim seal to cool and prevent the ingestion of hot gases into the cavity between the stator and the disk. This paper presents an experimental study of the flow mechanisms that are associated with injection through the hub rim seal at the rotor inlet. Two different injection rates are investigated: nominal sucking of −0.14% of the main massflow and nominal blowing of 0.9%. This investigation is executed on a one-and-1/2-stage axial turbine. The results shown here come from unsteady and steady measurements, which have been acquired upstream and downstream of the rotor. The paper gives a detailed analysis of the changing secondary flow field, as well as unsteady interactions associated with the injection. The injection of fluid causes a very different and generally more unsteady flow field at the rotor exit near the hub. The injection causes the turbine efficiency to deteriorate by about 0.6%.

Author(s):  
P. Schuepbach ◽  
R. S. Abhari ◽  
M. G. Rose ◽  
T. Germain ◽  
I. Raab ◽  
...  

In high-pressure turbines, a small amount of air is ejected at the hub rim seal, to cool and prevent the ingestion of hot gases into the cavity between the stator and the disk. This paper presents an experimental study of the flow mechanisms that are associated with injection through the hub rim seal at the rotor inlet. Two different injection rates are investigated: nominal sucking of −0.1% of the main massflow and nominal blowing of 0.9%. This investigation is executed on a one-and-1/2-stage axial turbine. The results shown here come from unsteady and steady measurements, which have been acquired upstream and downstream of the rotor. The paper gives a detailed analysis of the changing secondary flow field as well as unsteady interactions associated with the injection. The injection of fluid causes a very different and generally more unsteady flow field at the rotor exit near the hub. The injection causes the turbine efficiency to deteriorate by about 0.6%.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
Marco Sacchi ◽  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Stefano Zecchi

The secondary flow field in a large-scale high-pressure turbine cascade with micro-holed endwall cooling has been investigated at the Genova Laboratory of Aerodynamics and Turbomachinery in cooperation with Avio S.p.A in the framework of the European Project AITEB-2. The experimental investigation has been performed for the baseline configuration, with a smooth solid endwall installed, and for the cooled configuration with a micro-holed endwall providing micro-jets ejection from the wall. Two different cooling flow rates were investigated and the experimental results are reported in the paper. Different measurement techniques have been employed to analyze the secondary flow field along the channel and in a downstream tangential plane. Particle Image Velocimetry has been utilized to quantify the blade-to-blade velocity components in a plane located close to the endwall and in the midspan plane. Hot-wire measurements have been performed in a tangential plane downstream of the blade trailing edges in order to survey the micro-jets effects on the secondary flows behavior. The total pressure distributions, for the different blowing conditions, have been measured in the downstream tangential plane by means of a Kiel pneumatic probe. The results, represented in color plots of velocity, pressure loss coefficient and turbulent kinetic energy distributions, allow the identification of the endwall effusion cooling effects on location and strength of the secondary vortical structures. The thermal investigation of the effusion system is discussed in Part 2 of the paper.


Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flow-field. Of particular interest to the designer is the effect of purge on the secondary flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and Computational Fluid Dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically-accessible 1-stage turbine rig. The experimental campaign was conducted using Volumetric Velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using URANS computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the roll-up of a horseshoe-vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flow-rate, was shown to modify the secondary flow field by enhancing the passage vortex, both in strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
C. M. Schneider ◽  
D. Schrack ◽  
M. Kuerner ◽  
M. G. Rose ◽  
S. Staudacher ◽  
...  

This paper addresses the unsteady formation of secondary flow structures inside a turbine rotor passage. The first stage of a two-stage, low-pressure turbine is investigated at a Reynolds Number of 75,000. The design represents the third and the fourth stages of an engine-representative, low-pressure turbine. The flow field inside the rotor passage is discussed in the relative frame of reference using the streamwise vorticity. A multistage unsteady Reynolds-averaged Navier–Stokes (URANS) prediction provides the time-resolved data set required. It is supported by steady and unsteady area traverse data acquired with five-hole probes and dual-film probes at rotor inlet and exit. The unsteady analysis reveals a nonclassical secondary flow field inside the rotor passage of this turbine. The secondary flow field is dominated by flow structures related to the upstream nozzle guide vane. The interaction processes at hub and casing appear to be mirror images and have characteristic forms in time and space. Distinct loss zones are identified, which are associated with vane-rotor interaction processes. The distribution of the measured isentropic stage efficiency at rotor exit is shown, which is reduced significantly by the secondary flow structures discussed. Their impacts on the steady as well as on the unsteady angle characteristics at rotor exit are presented to address the influences on the inlet conditions of the downstream nozzle guide vane. It is concluded that URANS should improve the optimization of rotor geometry and rotor loss can be controlled, to a degree, by nozzle guide vane (NGV) design.


Author(s):  
D. Schrack ◽  
C. M. Schneider ◽  
M. Fraas ◽  
M. G. Rose ◽  
S. Staudacher ◽  
...  

The LP turbine research rig “ATRD” allows the study of detailed aerodynamics at low Reynolds numbers. The two-stage LP turbines are designed by MTU Aero Engines GmbH and tested in cooperation with the Institute of Aircraft Propulsion Systems (ILA) at Stuttgart University. This paper focuses on the development of the unsteady secondary flow field in two turbine geometries. The flow structures and vortex behaviour of a turbine with integrated 3D design (I3D) is compared to those of a datum case with axisymmetric endwalls. The unsteady flow and its effect on the time mean flow is analysed with five hole probe area traverse data and multistage URANS CFD calculations. The improvement through design optimisation is assessed by analysing secondary flow features as well as loss generation in the first rotor and the second vane. The RANS and URANS predicted improvements in turbine efficiency agree well with the measurement within wide uncertainty bounds. The structure of the secondary flow field is substantially unaltered by the I3D design, but loss coefficients show row loss reductions. The secondary flow structure of the first rotor is dominated by the first NGV which was not redesigned. Therefore an opportunity exists for further performance improvement with its redesign.


2014 ◽  
Vol 629 ◽  
pp. 119-124
Author(s):  
W. Ghopa Wan Aizon ◽  
Kenichi Funazaki ◽  
Mohd Radzi Abu Mansor

Modern gas turbine requires sophisticated cooling technologies to avoid thermal failure due to the extreme operating environment. Film cooling is one of the most important cooling technologies used for gas turbine hot-section components, particularly for blade aerofoil surfaces and endwall. Previous research has shown that the endwall region is considerably more difficult to cool than the blade aerofoil surfaces because of the existence of complex secondary flow structures such as horse-shoe vortex, cross flow and passage vortex in the blade passage. Therefore, this study focuses on aerodynamics interaction of the cooling air through the upstream slot with the secondary flow field. Experiments carried out using 5-holes Pitot tube have revealed the secondary flow field at blade downstream of linear cascade of high pressure turbine. A baseline condition without any leakage flows was compared with the leakage ejection case. Finally, both cases were validated by simulations from commercial software, ANSYS CFX.


Author(s):  
P. Z. Sterzinger ◽  
S. Zerobin ◽  
F. Merli ◽  
L. Wiesinger ◽  
A. Peters ◽  
...  

Abstract This paper presents the experimental and numerical evaluation and comparison of the different flow fields downstream of a turbine center frame duct and a low-pressure turbine stage, generated by varying the inlet flow conditions to the turbine center frame duct. The measurements were carried out in an engine-representative two-stage two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. The rig consists of a high-pressure (HPT) and a low-pressure (LPT) turbine stage, connected via a turbine center frame (TCF) with non-turning struts. Four individual high-pressure turbine purge flow rates and two low-pressure turbine purge flow rates were varied to achieve different engine-relevant TCF and LPT inlet flow conditions. The experimental data was acquired by means of five-hole-probe area traverses upstream and downstream of the TCF, and downstream of the LPT. A steady RANS simulation taking all purge flows in account was used for comparison and additional insight are gained from a numerical variation of the HPT and LPT purge flow rates. The focus of this study is on the impact of the variations in TCF inlet conditions on the secondary flow generation through the TCF duct and the carry-over effects on the exit flow field and performance of the LPT stage. Existing work is limited by either investigating multi-stage LPT configurations with generally very few measurements behind the first stage or by not including relevant HPT secondary flow structures in setting up the LPT inflow conditions. This work addresses both of these shortcomings and presents new insight into the TCF and LPT aerodynamic behavior at varying the HPT and LPT purge flows. The results demonstrate the importance of the HPT flow structures and their evolution through the TCF duct for setting up the LPT inflow conditions, and ultimately for assessing the performance of the first LPT stage.


Author(s):  
C. M. Schneider ◽  
D. Schrack ◽  
M. Kuerner ◽  
M. G. Rose ◽  
S. Staudacher ◽  
...  

This paper addresses the unsteady formation of secondary flow structures inside a turbine rotor passage. The first stage of a two-stage low pressure turbine is investigated at a Reynolds Number of 75 000. The design represents the third and the fourth stages of an engine representative low pressure turbine. The flow field inside the rotor passage is discussed in the relative frame of reference using the streamwise vorticity. A multi-stage URANS prediction provides the time-resolved data set required. It is supported by steady and unsteady area traverse data acquired with five-hole probes and dual-film probes at rotor inlet and exit. The unsteady analysis reveals a non-classical secondary flow field inside the rotor passage of this turbine. The secondary flow field is dominated by flow structures related to the upstream nozzle guide vane. The interaction processes at hub and casing appear to be mirror images and have characteristic forms in time and space. Distinct loss zones are identified which are associated with vane-rotor interaction processes. The distribution of the measured isentropic stage efficiency at rotor exit is shown which is reduced significantly by the secondary flow structures discussed. Their impacts on the steady as well as on the unsteady angle characteristics at rotor exit are presented to address the influences on the inlet conditions of the downstream nozzle guide vane.


Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


Sign in / Sign up

Export Citation Format

Share Document