An Axial Flow Compressor for Operation With Humid Air and Water Injection

Author(s):  
Jesuino Takachi Tomita ◽  
Luciano Porto Bontempo ◽  
João Roberto Barbosa

The first steps of the turbomachinery design usually rely on numerical tools based on inviscid formulation with corrections using loss models to account for viscous effects, secondary flows, tip clearances, and shock waves. The viscous effects are accounted for using semi-empirical correlations especially assembled for the chosen airfoils and range of operating conditions. Fast convergence and good accuracy are required from such design procedures. There are successful models that produce very accurate performance prediction. Among the methodologies commonly used, the streamline curvature (SLC) is used since those characteristics and the most important properties can be calculated reasonably well at any radial positions, assisting other more complex analysis programs. The SLC technique is, therefore, well suited for the design of axial flow compressors for reasons such as quick access to vital flow properties at the blade edges from which actions may be taken to improve its performance at the design stage. This work reports the association of a SLC computer program and commercial software for comparison purposes, as well as for grid generation required by a full 3D, turbulent Navier–Stokes computer program used for flow calculation in the blade passages. Application to a high performance three-stage axial flow compressor with inlet guide vane demonstrates the methodology adopted. The SLC program is also capable of calculating the compressor performance with humid air and water injection at any axial position along the compressor. The influence of water injection at different axial positions, water particle diameter, and temperature of water particles were studied for different humid air conditions. The positions of the evaporating water particles were calculated using their thermophysical and dynamic properties along the compressor.

Author(s):  
Jesuino Takachi Tomita ◽  
Luciano Porto Bontempo ◽  
Joa˜o Roberto Barbosa

The first steps of the turbomachinery design usually rely on numerical tools based on inviscid formulation with corrections using loss models to account for viscous effects, secondary flows, tip clearances and shock waves. The viscous effects are accounted for using semi-empirical correlations specially assembled for the chosen airfoils and range of operating conditions. Fast convergence and good accuracy are required from such design procedures. There are successful models that produce very accurate performance prediction. Among the methodologies commonly used, the streamline curvature (SLC) is used, since those characteristics and the most important properties can be calculated reasonably well at any radial positions, assisting other more complex analysis programs. The SLC technique is, therefore, well suited for the design of axial flow compressors, for reasons like quick access to vital flow properties at the blade edges, from which actions may be taken to improve its performance at the design stage. This work reports the association of a SLC computer program and commercial software for comparison purposes, as well as for grid generation required by a full 3D, turbulent Navier-Stokes computer program, used for flow calculation in the blade passages. Application to a high performance 3-stage axial-flow compressor with Inlet Guide Vane (IGV) demonstrates the methodology adopted. The SLC program is also capable of calculating the compressor performance with humid air and water injection at any axial position along the compressor. The influence of water injection at different axial positions, water particle diameter, temperature of water particles were studied for different humid air conditions. The positions of the evaporating water particles were calculated using their thermo-physical and dynamic properties along the compressor.


1959 ◽  
Vol 81 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Gino Sovran

The technique of smoke-flow visualization has been used to show clearly the action of the flow field upstream of a single rotor during rotating stall. The flow processes on the blades and in the blade passages of a stationary compressor cascade also have been observed using the same technique. An audio method of detecting rotating-stall patterns has been developed and has indicated that some compressor operating conditions at which no periodic flow disturbance was previously thought to occur actually contained rotating-stall patterns whose number of stalled regions changed very quickly from one value to another. The absolute speed of rotation of a stall zone was reduced to zero and its over-all shape clearly outlined by means of smoke visualization. The qualitative results of all these investigations have given a good physical picture of the rotating-stall phenomenon. Severe reverse flows were found to exist during rotating stall and these caused the formation of reversed flow regions extending upstream of a blade row. Furthermore, the distortions of the flow field in the vicinity of a blade row were found to be of such large magnitude that it does not seem likely that they can be described adequately by any linearized theory. Quantitative investigations were made into the effects of guide-vane turning and axial position on the rotating-stall characteristics of an axial-flow-compressor rotor. The absolute direction of the fluid entering such a configuration was found to affect nearly all facets of rotating-stall behavior.


Author(s):  
Jialing Lu ◽  
Wuli Chu ◽  
Yanhui Wu

In recent years endwall profiling has been well validated as a major new engineering design tool for the reduction of secondary loss in turbines. However, its application on compressors have been rarely performed and reported. This paper documents the findings of the analysis for diminishing compressor stator corner separation using endwall profiling; In the study, novel profiled endwalls were designed and numerically studied on a subsonic axial-flow compressor stage. The compressor stator endwalls were profiled on both axial and azimuthal directions. The results showed, the stator corner separation was significantly suppressed under all the operating conditions by implementing this profiled endwall. Significant improvements on stage pressure ratios and stage efficiency were observed. Detailed flow field changes, as well as endwall profiling methods are provided in the paper, so that the results of this research can be referenced to other compressor designs.


Author(s):  
Qiushi Li ◽  
Tianyu Pan ◽  
Tailu Sun ◽  
Zhiping Li ◽  
Yifang Gong

Experimental investigations are conducted to study the instability evolution in a transonic axial flow compressor at four specific rotor speeds covering both subsonic and transonic operating conditions. Two routes of evolution to final instability are observed in the test compressor: at low rotor speeds, a disturbance in the rotor tip region occurs and then leads to rotating stall, while at high rotor speeds, a low-frequency disturbance in the hub region leads the compressor into instability. Different from stall and surge, this new type of compressor instability at high rotor speed is initiated through the development of a low-frequency axisymmetric disturbance at the hub, and we name it “partial surge”. The frequency of this low-frequency disturbance is approximately the Helmholtz frequency of the system and remains constant during instability inception. Finally, a possible mechanism for the occurrence of different instability evolutions and the formation of partial surge are also discussed.


Author(s):  
Daisuke Morita ◽  
Yutaka Fujita ◽  
Yutaka Ohta ◽  
Eisuke Outa

Transient characteristics as well as unsteady cascade flow fields of a three-stage axial flow compressor with compression plane wave injection from the compressor downstream were experimentally investigated by detail measurements of casing wall pressure fluctuations and unsteady velocity. The main feature of tested compressor is a shock tube facility connected in series to the compressor outlet duct in order to supply a compression plane wave which simulates the sudden rise of the compressor back pressure in a gas turbine system. Research attention is mainly focused on the unsteady behavior of surge and rotating stall coexistence phenomenon, and influence of the compression plane wave injection on the compressor operating conditions. When the compressor is connected to the capacity tank, surge and rotating stall occur simultaneously according to the capacitance increment of the whole compression system. The surge cycle changes irregularly with a throttling of the valve installed just behind the compressor and several different types of surge behaviors are observed. Furthermore, even though the compressor is operating under the stable condition, it goes into surge by injecting the compression plane wave.


Author(s):  
Sangjo Kim ◽  
Donghyun Kim ◽  
Kuisoon Kim ◽  
Changmin Son ◽  
Myungho Kim ◽  
...  

New off-design profile loss models have been developed by performing thorough investigations on compressor performance prediction using one-dimensional stage-stacking approach and three-dimensional computational flow dynamics (CFD) results. Generally, a loss model incorporating various compressor geometry and operating conditions is required to predict the performance of various types of compressors. In this study, three sets of selected loss models were applied to predict axial flow compressor performance using stage-stacking approach. The results were compared with experimental data as well as CFD results. The comparison shows an interesting observation in choking region where the existing loss models cannot capture the rapid decrease in pressure and efficiency while CFD predicted the characteristics. Therefore, an improved off-design profile loss model is proposed for better compressor performance prediction in choking region. The improved model was derived from the correlation between the normalized total loss and the incidence angle. The choking incidence angle, which is a major factor in determining the off-design profile loss, was derived from correlations between the inlet Mach number, throat width-to-inlet spacing ratio, and minimum loss incidence angle. The revised stage-stacking program employing new profile loss model together with a set of loss models was applied to predict a single and multistage compressors for comparison. The results confirmed that the new profile loss model can be widely used for predicting the performance of single and multistage compressor.


1998 ◽  
Vol 120 (3) ◽  
pp. 477-486 ◽  
Author(s):  
D. W. Thompson ◽  
P. I. King ◽  
D. C. Rabe

The effects of stepped-tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine causing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100 percent design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0 percent increase in mass flow and a 1.5 percent improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Parametric studies of recirculating casing treatment were experimentally performed in a subsonic axial flow compressor. The recirculating casing treatment was parameterized with injector throat height, injection position, and circumferential coverage percentage. Eighteen recirculating casing treatments were tested to study the effects on compressor stability and on the compressor overall performance at three blade speeds. The profiles of recirculating casing treatment were optimized to minimize the losses generated by air recirculation. In the experiment, the stalling mass flow rate, total pressure ratio, and adiabatic efficiency of the compressor were measured to study the steady-state effects on the compressor performance of recirculating casing treatments, and static pressure disturbances on the casing wall were monitored to study the influence on stall dynamics. Results indicate that both the compressor stability and overall performance can be improved through recirculating casing treatment with appropriate geometrical parameters for all the test speeds. The influence on stall margin of one geometric parameter often depends on the choice of others, i.e. the interaction effects exist. In general, the recirculating casing treatment with a moderate injector throat and a large circumferential coverage is the optimal choice to enhance compressor stability. The injector of recirculating casing treatment should be placed upstream of the blade tip leading edge and the injector throat height should be lower than four times the rotor tip gap for the benefits of compressor efficiency. At 71% speed, the blade tip loading is decreased through recirculating casing treatment at the operating condition of near peak efficiency and increased near stall. Moreover, the outlet absolute flow angle is reduced in the tip region and enhanced at lower blade spans for both operating conditions. The stall inceptions are not changed with the implementation of recirculating casing treatment for all the test speeds, but the stall patterns are altered at 33% and 53% speeds, i.e. the stall with two cells is detected in the recirculating casing treatment compared with the solid casing with only one stall cell.


Author(s):  
Gregory S. Bloch ◽  
Walter F. O’Brien

Dynamic compression system response is a major concern in the operability of aircraft gas turbine engines. Multi-stage compression system computer models have been developed to predict compressor response to changing operating conditions. These models require a knowledge of the wide-range, steady-state operating characteristics as inputs, which has limited their use as predicting tools. The full range of dynamic axial-flow compressor operation spans forward and reversed flow conditions. A model for predicting the wide flow range characteristics of axial-flow compressor stages was developed and applied to a 3-stage, low-speed compressor with very favorable results and to a 10-stage, high-speed compressor with mixed results. Conclusions were made regarding the inception of stall and the effects associated with operating a stage in a multistage environment. It was also concluded that there are operating points of an isolated compressor stage that are not attainable when that stage is operated in a multi-stage environment.


Author(s):  
Donald W. Thompson ◽  
Paul I. King ◽  
Douglas C. Rabe

The effects of stepped tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine casing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100% design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0% increase in mass flow and a 1.5% improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


Sign in / Sign up

Export Citation Format

Share Document