Far-Field Noise Control in Supersonic Jets From Conical and Contoured Nozzles

Author(s):  
Jin-Hwa Kim ◽  
Martin Kearney-Fischer ◽  
Mo Samimy ◽  
Sivaram Gogineni

Plasma actuators are used to control far-field noise in Mach 1.65 jets from contoured and conical supersonic axisymmetric nozzles (henceforth, contoured and conical jets, respectively). The contoured nozzle is designed using the method of characteristics for a shock-free jet. The conical nozzle has converging and diverging conical sections with a sharp throat. Eight plasma actuators, distributed uniformly around the nozzle exit, are used and the jet is forced with azimuthal modes (m) 0–3 and ±4 and forcing Strouhal numbers ranging from 0.09 to 4.0. The far-field acoustic noise is measured by a linear microphone array covering polar angles from 25 deg to 80 deg relative to the jet axis. In both jets, the lower forcing azimuthal modes (m=0 and 1) are less effective than the higher modes (m=2, 3, and ±4), which have similar levels of overall sound pressure level (OASPL) reduction. At shallow angles relative to the jet axis, the reduction in OASPL is about 1.6–1.8 dB at low forcing Strouhal numbers in both jets at the most effective forcing mode of m=3. However, the OASPL in the sideline direction is only slightly increased (about 1 dB) for both the contoured and conical jets at m=3. The reduction at shallow polar angles is related to the decrease in the peak mixing noise level in both jets. The range of forcing Strouhal numbers providing significant noise reduction and the range of polar angles over which the noise is reduced are both much larger in the conical jet compared with the contoured jet. The screech tones are also reduced or suppressed – most likely due to weakening of naturally occurring structures by forcing.

Author(s):  
Jin-Hwa Kim ◽  
Martin Kearney-Fischer ◽  
Mo Samimy ◽  
Sivaram Gogineni

Plasma actuators are used to control far-field noise in Mach 1.65 jets from contoured and conical supersonic axisymmetric nozzles (henceforth contoured and conical jets, respectively). The contoured nozzle is designed using the method of characteristics for shock-free jet. The conical nozzle has converging and diverging conical sections with a sharp throat. Eight plasma actuators, distributed uniformly around the nozzle exit, are used and the jet is forced with azimuthal modes (m) 0–3, and ±4 and forcing Strouhal numbers ranging from 0.09 to 4.0. The far-field acoustic noise is measured by a linear microphone array covering polar angles from 25 to 80° relative to the jet axis. In both jets, the lower forcing azimuthal modes (m = 0 and 1) are less effective than the higher modes (m = 2, 3, and ±4), which have similar levels of overall sound pressure level (OASPL) reduction. At shallow angles relative to the jet axis, the reduction in OASPL is about 1.6–1.8 dB at low forcing Strouhal numbers in both jets at the most effective forcing mode of m = 3. However, the OASPL in the sideline direction is only slightly increased (about 1 dB) for both the contoured and conical jets at m = 3. The reduction at shallow polar angles is related to the decrease in the peak mixing noise level in both jets. The range of forcing Strouhal numbers providing significant noise reduction and the range of polar angles over which the noise is reduced, are both much larger in the conical jet compared to the contoured jet. The screech tones are also reduced or suppressed most likely due to weakening of naturally occurring structures by forcing.


2011 ◽  
Vol 19 (03) ◽  
pp. 291-316 ◽  
Author(s):  
ALI UZUN ◽  
M. YOUSUFF HUSSAINI

This paper demonstrates an application of computational aeroacoustics to the prediction of noise generated by a round nozzle jet flow. In this study, the nozzle internal flow and the free jet flow outside are computed simultaneously by a high-order accurate, multi-block, large-eddy simulation (LES) code with overset grid capability. To simulate the jet flow field and its radiated noise, we solve the governing equations on approximately 370 million grid points using high-fidelity numerical schemes developed for computational aeroacoustics. Projection of the near-field noise to the far-field is accomplished by coupling the LES data with the Ffowcs Williams–Hawkings method. The main emphasis of these simulations is to compute the jet flow in sufficient detail to accurately capture the physical processes that lead to noise generation. Two separate simulations are performed using turbulent and laminar inflow conditions at the jet nozzle inlet. Simulation results are compared with the corresponding experimental measurements. Results show that nozzle inflow conditions have an influence on the jet flow field and far-field noise.


1982 ◽  
Vol 116 ◽  
pp. 379-391 ◽  
Author(s):  
Nagy S. Nosseir ◽  
Chih-Ming Ho

The aerodynamic noise generated by a subsonic jet impinging on a flat plate is studied from measurements of near-field and surface-pressure fluctuations. The far-field noise measured at 90° to the jet axis is found to be generated by two different physical mechanisms. One mechanism is the impinging of the large coherent structures on the plate, and the other is associated with the initial instability of the shear layer. These two sources of noise radiate to the far field via different acoustical paths.


Author(s):  
Pankaj Rajput ◽  
Sunil Kumar

The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.


2009 ◽  
Vol 8 (3) ◽  
pp. 231-259 ◽  
Author(s):  
Jeff Kastner ◽  
Jin-Hwa Kim ◽  
Mo Samimy

The main goal of the present work is to excite various instabilities of an axisymmetric Mach 0.9 jet with a ReD of 0.76 × 106, track the ensuing large-scale structures/instability waves, and investigate relations between the dynamics of these structures and the far-field sound. The jet was excited over a large range of Strouhal numbers and several azimuthal modes by eight localized arc filament plasma actuators, equally spaced around the circumference of the nozzle, near the nozzle exit. The flow field and far-field noise were investigated using particle image velocimetry and a three-dimensional array of 12 microphones at 30° polar angle to the downstream jet axis. The microphone array results show that the high amplitude noise radiated to 30° polar angle is originated just downstream of the end of the potential core, in agreement with our previous results and the results in the literature. The streamwise noise source distribution was only sensitive to azimuthal modes around the jet preferred mode. Otherwise, the general trend was that forcing the jet at low Strouhal numbers moves the distribution upstream compared to the baseline jet, and at high Strouhal numbers results in a source distribution similar to the baseline jet. ***Conditionally-averaged PIV data were used to relate the flow dynamics and noise sources. The growth, saturation, and decay of the conditionally-averaged velocity fluctuations along the jet centerline correlate well with the far-field noise and the noise source distribution estimated using the microphone array. For m = 0 mode excitation around the jet column Strouhal number, the conditionally-averaged streamwise velocity fluctuations correlate well with the noise source distribution. While for m = 1, the correlation is best with the conditionally-averaged cross-stream fluctuations.


1984 ◽  
Vol 106 (3) ◽  
pp. 441-446 ◽  
Author(s):  
C. D. Mote ◽  
Wen Hua Zhu

The acoustic pressure radiated to the far field from dipole sources at the rim of a rotating circular sawblade is investigated theoretically and experimentally. Scattering from the sawblade surfaces and the presence of dipole source components in both the normal and radial coordinate directions explain the observed directivity and the dependence of the sound pressure upon sawblade rim velocity.


Author(s):  
Kenneth Van Treuren ◽  
Ricardo Sanchez ◽  
Charles Wisniewski ◽  
Paul Leitch

Abstract In an urban setting, the sound level of a drone must be acceptable. This paper compares a stock DJI Phantom 2 propeller to a stock propeller modified with a Trailing Edge (TE) notch. The purpose was to determine the extent of the near and far field noise signature of the propellers. Measurements were taken in an anechoic chamber at measurement distances of 1 ft to 24 ft. Upstream of propeller, the sound decay follows the standard decay rate (6 dB decrease for a doubling of the distance) from a location of approximately 4 ft. Downstream the sound decay does not follow standard decay rates until 22 ft. A comparison of the two propellers shows that the TE notch and stock propellers have similar Sound Pressure Level (SPL) values at all distances measured. Traverse measurements downstream of the two propellers in the wind tunnel confirms that the magnitudes of the SPL values are similar after a distance of one foot, however, there does seem to be an influence of the TE notch on the frequency spectrum, shifting frequencies slightly higher. In addition to the single propeller tests, a DJI F550 Flame Wheel hexacopter was used to compare the stock and TE notch propellers. While the hexacopter was overall 20 dBA nosier, no discernable difference in SPL between the two propellers was measured.


2016 ◽  
Vol 797 ◽  
pp. 802-850 ◽  
Author(s):  
Christoph Brehm ◽  
Jeffrey A. Housman ◽  
Cetin C. Kiris

Noise generation mechanisms for a perfectly expanded supersonic Mach number $M=1.8$ turbulent jet impinging on a $45^{\circ }$ inclined plate are investigated for a Reynolds number of $1.6\times 10^{6}$ employing a large-eddy simulation. Excellent comparisons with experimental acoustic far-field measurements and pressure measurements on the impingement plate are obtained. Two local maxima are identified in the far-field overall sound pressure levels in the $75^{\circ }$ and $120^{\circ }$ observer directions, which are associated with different noise generation mechanisms. The peak frequencies in the spectra with Strouhal numbers of $St=0.2$ for $75^{\circ }$ and $St=0.5$ for $120^{\circ }$ match the experimental measurements. The jet-impingement region generates pressure waves that propagate predominantly in the $120^{\circ }$ observer direction. The noise generation in this region is attributed to vortex stretching and tearing during shear-layer impingement, and shock oscillations that are induced by the motion of downstream convected vortical flow structures. The second peak in the overall sound pressure distribution at $75^{\circ }$ is associated with noise sources located in the wall jet. The noise generation in the wall jet is associated with supersonically convecting large-scale coherent flow structures that also interact with tail shocks in the wall jet causing large localized pressure fluctuations. Strongly coherent flow structures are identified by applying proper orthogonal decomposition (POD) to the unsteady flow field. The frequency characteristics of the most energetic POD modes are distinctly different based on which energy norm is chosen. The most energetic entropy-based POD modes contain a peak frequency of approximately $St=0.4{-}0.6$, while the most energetic turbulent kinetic-energy-based POD modes appear to be dominated by lower-frequency content. The causality method, based on Lighthill’s acoustic analogy, is used to link the acoustic noise signature to the relevant physical mechanisms in the source region. A differentiation is made between the application of normalized and non-normalized cross-correlation functions for noise source identification and characterization.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Erik Schneehagen ◽  
Thomas F. Geyer ◽  
Ennes Sarradj ◽  
Danielle J. Moreau

Abstract One known method to reduce vortex shedding from the tip of a blade is the use of end plates or winglets. Although the aerodynamic impact of such end plates has been investigated in the past, no studies exist on the effect of such end plates on the far-field noise. The aeroacoustic noise reduction of three different end-plate geometries is experimentally investigated. The end plates are applied to the free end of a wall-mounted symmetric NACA 0012 airfoil and a cambered NACA 4412 airfoil with an aspect ratio of 2 and natural boundary layer transition. Microphone array measurements are taken in the aeroacoustic open-jet wind tunnel at BTU Cottbus-Senftenberg for chord-based Reynolds numbers between 75,000 and 225,000 and angles of attack from 0$$^\circ$$ ∘ to 30$$^\circ$$ ∘ . The obtained acoustic spectra show a broad frequency hump for the airfoil base configurations at higher angles of attack that is attributed to tip noise. Hot-wire measurements taken for one configuration show that the application of an end plate diffuses the vorticity at the tip. The aeroacoustic noise contribution of the tip can be reduced when the endplates are applied. This reduction is most effective for higher angles of attack, when the tip vortex is the dominant sound source. Graphic abstract


Author(s):  
Clifford A. Brown

Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet-Surface Interaction Tests are intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. The initial goal is to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet-surface interaction is creating additional noise, and (2) determine regions of interest for future, more detailed, tests. To meet these objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer and (2) as a reflecting surface on the opposite side of the jet from the observer. The surface length was varied between 2 and 20 jet diameters downstream of the nozzle exit. Similarly, the radial distance from the jet centerline to the surface face was varied between 1 and 16 jet diameters. Far-field and phased array noise data were acquired at each combination of surface length and radial location using two nozzles operating at jet exit conditions across several flow regimes: subsonic cold, subsonic hot, underexpanded, ideally expanded, and overexpanded supersonic. The far-field noise results, discussed here, show where the jet noise is partially shielded by the surface and where jet-surface interaction noise dominates the low frequency spectrum as a surface extends downstream and approaches the jet plume.


Sign in / Sign up

Export Citation Format

Share Document