Stall Inception Mechanism in an Axial Flow Fan Under Clean and Distorted Inflows

2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Pramod B. Salunkhe ◽  
A. M. Pradeep

The present paper describes the use of Morlet wavelet transform in understanding the stall inception mechanism in a single stage axial flow fan. Unsteady pressure data from wall mounted sensors were used in the wavelet transforms. This paper was carried out under undistorted and distorted inflow conditions as well as for slow throttle closure and throttle ramping. It was observed from the wavelet transforms that the stall inception under clean inflow (undistorted) and counter-rotating inflow distortions (in the direction opposing the rotor rotation) incur through short length-scale disturbances and through long length-scale disturbances under static and co-rotating inflow distortions (in the same direction of rotor rotation). Modal activity was observed to be insignificant under clean inflow while under static inflow distortion, long length-scale disturbances evolved due to interaction between rotor blades and the distorted sector, especially near the trailing edge of the distortion screen. The presence of a strong mode was observed under both co- and counter-rotating inflow distortions. With throttle ramping, stall inception occurs through long and short length-scale disturbances under co- and counter-rotating inflow distortions, respectively. Some preliminary flow characteristics were studied using a seven hole probe. A significant increase in flow angle and decrease in axial flow coefficient close to the rotor tip were observed under co-rotating inflow distortion as compared with counter-rotating inflow distortion.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Tegegn Dejene Toge ◽  
A. M. Pradeep

The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span) and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.


Author(s):  
Takahiro Nishioka ◽  
Shuuji Kuroda ◽  
Tadashi Kozu

Inception patterns of rotating stall in a low-speed axial flow fan have been investigated experimentally. Experiments have been carried out at two different stagger angle settings for rotor blades. Pressure and velocity fluctuations were measured to elucidate the features of the stall cells and the stall inception patterns. At the design stagger angle setting for the rotor blades, a short length-scale stall cell known as a “spike” and multiple short length-scale stall cells appear when the slope of pressure-rise characteristic is almost zero. These stall cells grow into a long length-scale stall cell as flow rate decreases. The spike and the multiple short length-scale stall cells do not make the slope of the characteristic positive. However, the long length-scale stall cell induces a full-span stall, and makes the slope of the characteristic positive. At the small stagger angle, a long length-scale disturbance known as a “modal oscillation” is observed first, when the slope of the characteristic is positive. Then the spikes appear together with the modal oscillation as flow rate decreases. The long length-scale stall cell is generated by the spikes without change in the size of the modal oscillation. Suction-tip corner stall occurs in the stator passage near the peak of the characteristic at both the design and the small stagger angle settings. At the design stagger angle, however, the corner stall does not induce the modal oscillation and does not make the characteristic positive. In contrast, the corner stall at the small stagger angle induces the modal oscillation and makes the characteristic positive because it is larger than that at the design stagger angle. It is concluded from these results that the rotating stall inception patterns depend on the rotor stagger angle, which influences blade loading and rotor-stator matching.


Author(s):  
Feng Lin ◽  
Meilin Li ◽  
Jingyi Chen

A theoretical and experimental study of stall inception processes in a three-stage low-speed axial flow compressor with inlet distortion is presented in this paper. Since inlet distortion provides asymmetric flows imposing onto the compressor, the main goal of this research is to unveil the mechanism of how such flows initiate long and/or short length-scale disturbances and how the compression system reacts to those disturbances. It is found that the initial disturbances are always triggered by the distorted flows, yet the growth of such disturbances depends on system dynamics. While in many cases the stall precursors were the short length scale spikes, there were some cases where the compressor instability was triggered after the disturbances going through a long-to-short length scale transition. A Moore-Greitzer based (system scale) model was proposed to qualitatively explain this phenomenon. It was found that when the compressor operated in a region where the nonlinearity of the characteristics dominated, long length-scale disturbances induced by the inlet distortion would evolve into short length-scale disturbances before they disappeared or triggered stall. However, the model was not able to predict the fact that many disturbances that were triggered by the distorted sector(s) were completely damped out in the undistorted sector(s). It is thus suggested that in future research of compressor instability, one should consider the flows in blade passage scale, the dynamics in system scale and their interaction simultaneously.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 958
Author(s):  
Chenlong Jiang ◽  
Mengjiao Li ◽  
Enda Li ◽  
Xingye Zhu

Based on Shear Stress Transport (SST) turbulence model for unsteady simulation of an axial-flow fan, this paper studies the time-frequency information in the hump region, and investigates the disturbance information of spike and modal wave under different flow coefficients based on continuous wavelet transform (CWT). The results show that before the hump point, the low-frequency modal wave occupies the main disturbance form and circularly propagates at 1/10 of the rotor speed, and the axial-flow fan does not enter the stall stage; while after the flow coefficient reduces to the hump point, the spike wave with higher frequency replaces the modal wave as the main disturbance mode while the axial-flow fan enters the stall stage. Through in-depth investigation of unsteady flow characteristics under the hump point, it is found that after experiencing the emerging spike, with the sharp increase of incidence angle, some flow distortions appear on the intake surface, and further induce some flow paths to form stall vortices. When a path goes into stall stage, the airflow state is greatly affected, the inverse flow and air separation phenomenon in the rim region increase significantly, and the flow capacity decreases significantly, so the flow capacity in the hub region increases correspondingly. The flow path distortion of tip leakage flow (TLF) and leading edge (LE) spillage caused by the stall vortices are the main inducements of rotating stall.


Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
S. Yoshida ◽  
M. Furukawa

The transient processes of rotating stall evolution have been investigated experimentally in a low-speed axial compressor stage with three stator-rotor gaps. The pressure traces at 8 circumferential locations on the casing wall near the rotor leading edge have been analyzed by the wavelet transforms. With the appropriate mother wavelets, the evolution of short and long length-scale disturbances leading to the stall can be captured clearly. Behavior of these disturbances is different depending on the stator-rotor gap. For the large and middle gap, the stall inception is detected by a spiky short length-scale disturbance, and the number of spiky waves increases to generate the high frequency waves. They becomes the short length-scale part-span stall cells at the mild stall for the large gap, while they turn into a big stall cell with growth of a long length-scale disturbance for the middle gap. In the latter case, therefore, the stalling process was identified with ‘high frequency stall inception’. For the small stator-rotor gap, the stalling process is identified with ‘long wave-length stall inception’, and supported the recent computational model for the short wave-length stall inception by showing that closing the rotor-stator gaps suppressed the growth of short length-scale disturbances. From the measurement of the pressure field traces on the casing wall, a hypothesis has been built up that the short length-scale disturbance should result from a separation vortex from a blade surface to reduce circulation. The processes of the stall evolution are discussed on this hypothesis.


2002 ◽  
Vol 124 (3) ◽  
pp. 376-384 ◽  
Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
S. Yoshida ◽  
M. Furukawa

The transient processes of rotating stall evolution have been investigated experimentally in a low-speed axial compressor stage with three stator-rotor gaps. The pressure traces at eight circumferential locations on the casing wall near the rotor leading edge have been analyzed by the wavelet transforms. With the appropriate mother wavelets, the evolution of short and long length-scale disturbances leading to the stall can be captured clearly. Behavior of these disturbances is different depending on the stator-rotor gap. For the large and middle gap, the stall inception is detected by a spiky short length-scale disturbance, and the number of spiky waves increases to generate the high frequency waves. They become the short length-scale part-span stall cells at the mild stall for the large gap, while they turn into a big stall cell with growth of a long length-scale disturbance for the middle gap. In the latter case, therefore, the stalling process was identified with “high-frequency stall inception.” For the small stator-rotor gap, the stalling process is identified with “long wavelength stall inception” and supported the recent computational model for the short wavelength stall inception by showing that closing the rotor-stator gaps suppressed the growth of short length-scale disturbances. From the measurement of the pressure field traces on the casing wall, a hypothesis has been developed that the short length-scale disturbance should result from a separation vortex from a blade surface to reduce circulation. The processes of the stall evolution are discussed on this hypothesis.


Author(s):  
Joshua D. Cameron ◽  
Matthew A. Bennington ◽  
Mark H. Ross ◽  
Scott C. Morris ◽  
Thomas C. Corke

Effects of rotor centerline offset and whirl on the pre-stall and stall inception behavior of a high-speed tip-critical axial compressor were investigated. The observations were made using a circumferential array of unsteady pressure transducers. The maximum amount of rotor offset and whirl used in this investigation was 26% and 13% of the design axisymmetric tip clearance respectively. Measurements were conducted using transient throttle movements which quickly decreased the mass flow in the compressor until the onset of rotating stall. A second set of measurements used quasi-transient throttling starting from a mass flow about 0.5% larger than the stalling mass flow. These data were analyzed with the traveling wave energy method, visual inspection of the filtered pressure traces, and a two-point spatial correlation technique. For the uniform tip clearance case rotating stall occurred while the slope of the pressure rise characteristic was negative. As expected, the flow breakdown exhibited “spike” inception with no observable rotating disturbances in the pre-stall time period. The introduction of small levels of steady and unsteady tip clearance asymmetry did not significantly alter the time average performance of the stage; circumferential variations in pressure rise and flow coefficient were minimal and the stalling flow coefficient remained unchanged. However, significant short length-scale rotating disturbances were observed in both of these cases prior to stall inception. As in the symmetric tip clearance case, short length-scale disturbances initiated rotating stall in the non-uniform tip clearance experiments. The location of the generation of the incipient stall cells with respect to the non-uniform tip clearance was strongly effected by the rotor offset/whirl.


2005 ◽  
Vol 128 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Feng Lin ◽  
Meilin Li ◽  
Jingyi Chen

A theoretical and experimental study of stall inception processes in a three-stage low-speed axial flow compressor with inlet distortion is presented in this paper. Since inlet distortion provides asymmetric flows imposing onto the compressor, the main goal of this research is to unveil the mechanism of how such flows initiate long and/or short length-scale disturbances and how the compression system reacts to those disturbances. It is found that the initial disturbances are always triggered by the distorted flows, yet the growth of such disturbances depends on system dynamics. While in many cases the stall precursors were the short length-scale spikes, there were some cases where the compressor instability was triggered after the disturbances going through a long-to-short length-scale transition. A Moore-Greitzer-based (system scale) model was proposed to qualitatively explain this phenomenon. It was found that, when the compressor operated in a region where the nonlinearity of the characteristics dominated, long length-scale disturbances induced by the inlet distortion would evolve into short length-scale disturbances before they disappeared or triggered stall. However, the model was not able to predict the fact that many disturbances that were triggered by the distorted sector(s) were completely damped out in the undistorted sector(s). It is thus suggested that in future research of compressor instability, one should consider the flows in blade passage scale, the dynamics in system scale, and their interaction simultaneously.


Author(s):  
Satoshi Joukou ◽  
Yasushi Shinkawa ◽  
Toshio Kanno ◽  
Hideo Nishida ◽  
Takahiro Nishioka ◽  
...  

Stall inception patterns for three low-solidity cascade diffusers were experimentally investigated to extend the operating range of centrifugal compressor. Pressure fluctuations on the wall and flow distributions at the diffuser inlet were measured, and static pressure-rises across the diffuser vane were also measured to clarify the mechanism of rotating stall inception. In the case of the original diffuser (LSD_O), which had the radius ratio between the impeller outlet and the diffuser vane inlet of 1.10 and a flat plate wing section, a short length-scale stall cell known as a spike first appeared in the positive slope of the diffuser static pressure-raise (after the flat slope was maintained), and then a surge occurred as flow-rate decreased. The propagation speed of short length-scale stall cell was about 13% of the impeller rotation speed. The measured flow distribution at the inlet of the LSD_O suggested that the flow separation occurred in the vaneless space and this separation influenced the rotating stall. In the case of the LSD_A, which had the radius ratio of 1.10 and the NACA 63 wing section, a short length-scale stall cell that was smaller than that of LSD_O was appeared in the positive slope of the diffuser static pressure-raise (without the flat slope). A surge also occurred as further flow-rate decreased. The propagation speed of short length-scale stall cell was about 13% just prior to surge point. In contrast, in the case of LSD_B, which had the radius ratio of 1.05 and the NACA 63 wing section, a small disturbance appeared without spike just prior to surge point and rotating stall did not occur. The small disturbance did not propagate in the circumferential direction. Moreover, the flow separation did not occur in the semi-vaneless space. At the stall inception point of LSD_O and LSD_A, the averaged absolute flow angle at the diffuser inlet agreed with the onset flow angel of rotating stall in vaneless diffuser predicted by Senoo. Therefore, it was considered that the flow separation also occurred in the vaneless space and this separation influenced the rotating stall in the case of LSD_A. Moreover, it was considered that the difference of two stall cell patterns between LSD_O and LSD_A depended on the static pressure-rise characteristic of diffuser determined by the design specifications in case of that the rotating stall occurred in the vaneless space. In contrast, at the point of the small disturbance appeared of LSD_B, the averaged absolute flow angle at the diffuser inlet is smaller than that predicted by Senoo. Therefore, in case of small the radius ratio, the reverse flow in vaneless diffuser is suppressed, and the rotating stall is also suppressed.


Sign in / Sign up

Export Citation Format

Share Document