Measurements of Losses and Reynolds Stresses in the Secondary Flow Downstream of a Low-Speed Linear Turbine Cascade

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner

Experimental measurements of the mean and turbulent flow field were preformed downstream of a low-speed linear turbine cascade. The influence of turbulence on the production of secondary losses is examined. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Each probe was traversed downstream of the cascade along planes positioned at three axial locations: 100%, 120%, and 140% of the axial chord (Cx) downstream of the leading edge. The seven-hole pressure probe was used to determine the local total and static pressure as well as the three mean velocity components. The rotatable x-type hotwire probe, in addition to the mean velocity components, provided the local Reynolds stresses and the turbulent kinetic energy. The axial development of the secondary losses is examined in relation to the rate at which mean kinetic energy is transferred to turbulent kinetic energy. In general, losses are generated as a result of the mean flow dissipating kinetic energy through the action of viscosity. The production of turbulence can be considered a preliminary step in this process. The measured total pressure contours from the three axial locations (1.00, 1.20, and 1.40Cx) demonstrate the development of the secondary losses. The peak loss core in each plane consists mainly of low momentum fluid that originates from the inlet endwall boundary layer. There are, however, additional losses generated as the flow mixes with downstream distance. These losses have been found to relate to the turbulent Reynolds stresses. An examination of the turbulent deformation work term demonstrates a mechanism of loss generation in the secondary flow region. The importance of the Reynolds shear stresses to this process is explored in detail.

Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner

Experimental measurements of the mean and turbulent flow field were preformed downstream of a low-speed linear turbine cascade. The influence of turbulence on the production of secondary losses is examined. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Each probe was traversed downstream of the cascade along planes positioned at three axial locations: 100%, 120% and 140% of the axial chord (Cx) downstream of the leading edge. The seven-hole pressure probe was used to determine the local total and static pressure as well as the three mean velocity components. The rotatable x-type hotwire probe, in addition to the mean velocity components, provided the local Reynolds stresses and the turbulent kinetic energy. The axial development of the secondary losses is examined in relation to the rate at which mean kinetic energy is transferred to turbulent kinetic energy. In general, losses are generated as a result of the mean flow dissipating kinetic energy through the action of viscosity. The production of turbulence can be considered a preliminary step in this process. The measured total pressure contours from the three axial locations (1.00, 1.20 and 1.40Cx) demonstrate the development of the secondary losses. The peak loss core in each plane consists mainly of low momentum fluid that originates from the inlet endwall boundary layer. There are, however, additional losses generated as the flow mixes with downstream distance. These losses have been found to relate to the turbulent Reynolds stresses. An examination of the turbulent deformation work term demonstrates a mechanism of loss generation in the secondary flow region. The importance of the Reynolds shear stress to this process is explored in detail.


1993 ◽  
Vol 115 (1) ◽  
pp. 109-114 ◽  
Author(s):  
T.-M. Liou ◽  
Y.-Y. Wu ◽  
Y. Chang

Laser-Doppler velocimeter measurements of mean velocities, turbulence intensities, and Reynolds stresses are presented for periodic fully developed flows in a channel with square rib-disturbed walls on two opposite sides. Quantities such as the vorticity thickness and turbulent kinetic energy are used to characterize the flow. The investigated flow was periodic in space. The Reynolds number based on the channel hydraulic diameter was 3.3×104. The ratios of pitch to rib-height and rib-height to chamber-height were 10 and 0.133, respectively. Regions where maximum and minimum Reynolds stress and turbulent kinetic energy occurred were identified from the results. The growth rate of the shear layers of the present study was compared with that of a backward-facing step. The measured turbulence anisotropy and structure parameter distribution were used to examine the basic assumptions embedded in the k–ε and k–ε–A models. For a given axial station, the peak axial mean-velocity was found not to occur at the center point. The secondary flow was determined to be Prandtl’s secondary flow of the second kind according to the measured streamwise mean vorticity and its production term.


1984 ◽  
Vol 8 (3) ◽  
pp. 165-170
Author(s):  
L.P. Hackman ◽  
A.B. Strong ◽  
G.D. Raithby

This paper reports predictions of the mean velocity, the turbulent kinetic energy and the pressure and skin friction coefficients for turbulent flow over a backward facing step based on the standard k – ε closure for the turbulence shear stresses. In previous publications, errors due to the numerical algorithm as distinct from the turbulence model have been carefully assessed using different numerical schemes and finite volume geometries and it is argued that the current results are numerically accurate. Thus one can now assess the accuracy of the k – ε model of turbulence independently of numerical error. The results predicted herein were found to be in reasonable agreement with relevant experimental data.


Author(s):  
Chung-Chu Chen ◽  
Tong-Miin Liou

Laser-Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned duct simulating the coolant passages employed in gas turbine blades under rotating and non-rotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter (Dh) and bulk mean velocity (Ub) was fixed at 1 × 104. The rotating case had a range of rotation number (Ro = ΩDh/Ub) from 0 to 0.2. It is found that both the skewness of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, and the magnitude of turbulence intensity level increases non-linearly with increasing Ro. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro = 0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. For the first time, the measured flow characteristics account for the reported spanwise heat transfer distributions in the rotating channels, especially the high heat transfer enhancement on the leading wall in the turn. For both rotating and non-rotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in affecting the overall enhancement of heat transfer is well addressed.


2003 ◽  
Vol 125 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Tong-Miin Liou ◽  
Chung-Chu Chen ◽  
Meng-Yu Chen

Laser Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned smooth duct simulating the coolant passages employed in gas turbine blades under rotating and nonrotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter and bulk mean velocity was fixed at 1×104. The rotation number Ro was varied from 0 to 0.2. It is found that as Ro is increased, both the skewness (SK) of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, SK=2.3 Ro and U2+V2¯/Uh=2.3 Ro+0.4, and the magnitude of turbulence intensity level increases exponentially. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro=0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. The size of separation bubble immediately after the turn is found to diminish to null as Ro is increased from 0 to 0.2. A simple correlation is developed between the bubble size and Ro. A critical range of Ro responsible for the switch of faster moving flow from near the outer wall to the inner wall is identified. For both rotating and nonrotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local the heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in the overall enhancement of heat transfer is well addressed.


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander

The final losses within a turbulent flow are realized when eddies completely dissipate to internal energy through viscous interactions. The accurate prediction of the turbulence dissipation, and therefore the losses, requires turbulence models which represent, as accurately as possible, the true flow physics. Eddy viscosity turbulence models, commonly used for design level computations, are based on the Boussinesq approximation and inherently assume the eddy viscosity field is isotropic. The current paper compares the computational predictions of the flow downstream of a low-speed linear turbine cascade to the experimentally measured results. Steady-state computational simulations were performed using ANSYS CFX v12.0 and employed the shear stress transport (SST) turbulence model with the γ-Reθ transition model. The experimental data includes measurements of the mean and turbulent flow quantities. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Data is presented for two axial locations: 120% and 140% of the axial chord (Cx) downstream of the leading edge. The computed loss distribution and total bladerow losses are compared to the experimental measurements. Differences are noted and a discussion of the flow structures provides insights into the origin of the differences. Contours of the shear eddy viscosity are presented for each axial plane. The secondary flow appears highly anisotropic, demonstrating a fundamental difference between the computed and measured results. This raises questions as to the validity of using two-equation turbulence models, which are based on the Boussinesq approximation, for secondary flow predictions.


2011 ◽  
Vol 692 ◽  
pp. 28-52 ◽  
Author(s):  
Matthew B. de Stadler ◽  
Sutanu Sarkar

AbstractDirect numerical simulation is used to simulate the turbulent wake behind an accelerating axisymmetric self-propelled body in a stratified fluid. Acceleration is modelled by adding a velocity profile corresponding to net thrust to a self-propelled velocity profile resulting in a wake with excess momentum. The effect of a small to moderate amount of excess momentum on the initially momentumless self-propelled wake is investigated to evaluate if the addition of excess momentum leads to a large qualitative change in wake dynamics. Both the amount and shape of excess momentum are varied. Increasing the amount of excess momentum and/or decreasing the radial extent of excess momentum was found to increase the defect velocity, mean kinetic energy, shear in the velocity gradient and the wake width. The increased shear in the mean profile resulted in increased production of turbulent kinetic energy leading to an increase in turbulent kinetic energy and its dissipation. Slightly larger vorticity structures were observed in the late wake with excess momentum although the differences between vorticity structures in the self-propelled and 40 % excess momentum cases was significantly smaller than suggested by previous experiments. Buoyancy was found to preserve the doubly inflected velocity profile in the vertical direction, and similarity for the mean velocity and turbulent kinetic energy was found to occur in both horizontal and vertical directions. While quantitative differences were observed between cases with and without excess momentum, qualitatively similar evolution was found to occur.


1992 ◽  
Vol 237 ◽  
pp. 301-322 ◽  
Author(s):  
Ji Ryong Cho ◽  
Myung Kyoon Chung

By considering the entrainment effect on the intermittency in the free boundary of shear layers, a set of turbulence model equations for the turbulent kinetic energy k, the dissipation rate ε, and the intermittency factor γ is proposed. This enables us to incorporate explicitly the intermittency effect in the conventional K–ε turbulence model equations. The eddy viscosity νt is estimated by a function of K, ε and γ. In contrast to the closure schemes of previous intermittency modelling which employ conditional zone averaged moments, the present model equations are based on the conventional Reynolds averaged moments. This method is more economical in the sense that it halves the number of partial differential equations to be solved. The proposed K–ε–γ model has been applied to compute a plane jet, a round jet, a plane far wake and a plane mixing layer. The computational results of the model show considerable improvement over previous models for all these shear flows. In particular, the spreading rate, the centreline mean velocity and the profiles of Reynolds stresses and turbulent kinetic energy are calculated with significantly improved accuracy.


Author(s):  
Jean-François Monier ◽  
Jérôme Boudet ◽  
Joëlle Caro ◽  
Liang Shao

An academic configuration of a single airfoil and a flat casing with clearance, put in the potential core of a jet at Rec = 9.3 × 105, is studied in order to analyse the turbulence modelling. A zonal large-eddy simulation (ZLES), validated against experimental results, is considered as a reference to evaluate two steady Reynolds-averaged Navier-Stokes (RANS) simulations. Both RANS simulations use the original Wilcox k-ω model. They differ on the constitutive relation: one uses the classical Boussinesq constitutive relation, while the other relies on the quadratic constitutive relation (QCR). The analysis focuses on the mean velocities, the Reynolds stresses and a term-to-term decomposition of the turbulent kinetic energy budget on a plane through the clearance. RANS represents quite well the mean velocities, but under-estimates the Reynolds stresses, thus under-estimates every turbulent kinetic energy budget term. The QCR has little effect on the flow and the turbulent quantities. The method allowed a fine analysis of the physics of the turbulence.


Sign in / Sign up

Export Citation Format

Share Document