Fluctuation Characteristics of Spray Velocity Field of Coaxial Convergent Nozzle by Particle-Image-Velocimetry Measurements

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Cong Du ◽  
Jian-Zhong Liu ◽  
Zhen-Yu Huang ◽  
Lian-Sheng Liu ◽  
Jun-Hu Zhou ◽  
...  

Coaxial elements and annular liquid jets are normally utilized in industrial applications to generate sprays. A particle image velocimetry investigation on the transient characteristics of the spray velocity field of a coaxial convergent nozzle is carried out in this paper. Based on the measurement results, spectrum analysis is performed to detect the process of atomization in the spray. Experimental results show that at large gas jet velocities, the process of generation of droplets is controlled mainly by the dynamics of liquid ligaments, and the power spectrum reveals that the velocity fluctuations are superimposed on the transient flow field by the effect of the shear layer instability. With the increase of gas velocity, the fluctuations of the spray velocity develop progressively to higher frequencies.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Nirmalendu Biswas ◽  
Souvick Chatterjee ◽  
Mithun Das ◽  
Amlan Garai ◽  
Prokash C. Roy ◽  
...  

This work investigates natural convection in an enclosure with localized heating on the bottom wall with a flushed or protruded heat source and cooled on the top and the side walls. Velocity field measurements are done by using 2D particle image velocimetry (PIV) technique. Proper orthogonal decomposition (POD) has been used to create low dimensional approximations of the system for predicting the flow structures. The POD-based analysis reveals the modal structure of the flow field and also allows reconstruction of velocity field at conditions other than those used in PIV study.


Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
James Schock ◽  
Jason Dahl

Two methods are investigated to simultaneously obtain both three-dimensional (3D) velocity field and free surface elevations (FSEs) measurements near a surface piercing foil, while limiting the equipment. The combined velocity field and FSE measurements are obtained specifically for the validation of numerical methods requiring simultaneous field data and free surface measurements for a slender body shape. Both methods use stereo particle image velocimetry (SPIV) to measure three component velocities in the flow field and both methods use an off the shelf digital camera with a laser intersection line to measure FSEs. The first method is performed using a vertical laser sheet oriented parallel to the foil chord line. Through repetition of experiments with repositioning of the laser, a statistical representation of the three-dimensional flow field and surface elevations is obtained. The second method orients the vertical laser sheet such that the foil chord line is orthogonal to the laser sheet. A single experiment is performed with this method to measure the three-dimensional three component (3D3C) flow field and free surface, assuming steady flow conditions, such that the time dimension is used to expand the flow field in 3D space. The two methods are compared using dynamic mode decomposition and found to be comparable in the primary mode. Utilizing these methods produces results that are acceptable for use in numerical methods verification, at a fraction of the capital and computing cost associated with two plane or tomographic particle image velocimetry (PIV).


Author(s):  
Wael Fairouz Saleh ◽  
Ibrahim Galal Hassan

The discharge of two-phase flow from a stratified region through single or multiple branches is an important process in many industrial applications including the pumping of fluid from storage tanks, shell-and-tube heat exchangers, and the fluid flow through small breaks in cooling channels of nuclear reactors during loss-of-coolant accidents (LOCA). Knowledge of the flow phenomena involved along with the quality and mass flow rate of the discharging stream(s) is necessary to adequately predict the different phenomena associated with the process. Particle Image Velocimetry (PIV) in three dimension was used to provide detailed measurements of the flow patterns involving distributions of mean velocity, vorticity field, and flow structure. The experimental investigation was carried out to simulate two phase discharge from a stratified region through branches located on a semi-circular wall configuration during LOCA scenarios. The semi-circular test section is in close dimensional resemblance with that of a CANDU header-feeder system, with branches mounted at orientation angles of zero, 45 and 90 degrees from the horizontal. The experimental data for the phase development (mean velocity, flow structure, etc.) was done during single discharge through the bottom branch from an air/water stratified region over a three selected Froude numbers. These measurements were used to describe the effect of outlet flow conditions on phase redistribution in headers and understand the entrainment phenomena.


2013 ◽  
Vol 456 ◽  
pp. 644-647
Author(s):  
Jun Feng Gao

Particle image velocimetry (PIV) was applied to characterize the morphological changes of flocs and to acquired velocity field data in the flocculation process in Taylor-Couette reactor. By use of PIV the morphological of the flocs with ferric trichloride (FeCl3) could be characterized and described with good performance, the velocity vector also could be measurement. It was shown that the flocculation efficiencies reached the maximum values and the size of the generated flocs was the biggest when the roating speed was in the range between 20~60 rpm. It was demonstrated that PIV can be exploited as a useful tool in the in-situ observation the flocculation processes. Keywords: flocs morphology; flocculation efficiencies; velocity vector; PIV


Sign in / Sign up

Export Citation Format

Share Document