Effect of Flow Inclination on Wind Turbine Performance

Author(s):  
Christina Tsalicoglou ◽  
Sarah Barber ◽  
Ndaona Chokani ◽  
Reza S. Abhari

This work examines the effect of flow inclination on the performance of a stand-alone wind turbine and of wind turbines operating in the wakes of upstream turbines. The experimental portion of this work, which includes performance and flowfield measurements, is conducted in the ETH dynamically-scaled wind turbine test facility, with a wind turbine model that can be inclined relative to the incoming flow. The performance of the wind turbine is measured with an in-line torquemeter, and a 5-hole steady-state probe is used to detail the inflow and wake flow of the turbine. Measurements show that over a range of tip-speed ratios of 4–7.5, the power coefficient of a wind turbine with an incoming flow of 15 deg inclination decreases on average by 7% relative to the power coefficient of a wind turbine with a noninclined incoming flow. Flowfield measurements show that the wake of a turbine with an inclined incoming flow is deflected; the deflection angle is approximately 6 deg for an incoming flow with 15 deg inclination. The measured wake profiles are used as inflow profiles for a blade element momentum code in order to quantify the impact of flow inclination on the performance of downstream wind turbines. In comparison to the case without inclination in the incoming flow, the combined power output of two aligned turbines with incoming inclined flow decreases by 1%, showing that flow inclination in complex terrain does not significantly reduce the energy production.

Author(s):  
C. Tsalicoglou ◽  
S. Barber ◽  
N. Chokani ◽  
R. S. Abhari

This work examines the effect of flow inclination on the performance of a stand-alone wind turbine and of wind turbines operating in the wakes of upstream turbines. The experimental portion of this work, which includes performance and flow-field measurements, is conducted in the ETH dynamically-scaled wind turbine test facility, with a wind turbine model that can be inclined relative to the incoming flow. The performance of the wind turbine is measured with an in-line torque-meter and a 5-hole steady-state probe is used to detail the inflow and wake flow of the turbine. Measurements show that over a range of tip-speed ratios of 4–7.5, the power coefficient of a wind turbine with an incoming flow of 15-degrees inclination decreases on average by 7% relative to the power coefficient of a wind turbine with a non-inclined incoming flow. Flowfield measurements show that the wake of a turbine with an inclined incoming flow is deflected; the deflection angle is approximately 6-degrees for an incoming flow with 15-degrees inclination. The measured wake profiles are used as inflow profiles for a Blade Element Momentum code in order to quantify the impact of flow inclination on the performance of downstream wind turbines. In comparison to the case without inclination in the incoming flow, the combined power output of two aligned turbines with incoming inclined flow decreases by 1%, showing that flow inclination in complex terrain does not significantly reduce the energy production.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
S. Barber ◽  
Y. Wang ◽  
S. Jafari ◽  
N. Chokani ◽  
R. S. Abhari

Wind energy is the world’s fastest growing source of electricity production; if this trend is to continue, sites that are plentiful in terms of wind velocity must be efficiently utilized. Many such sites are located in cold, wet regions such as the Swiss Alps, the Scandinavian coastline, and many areas of China and North America, where the predicted power curves can be of low accuracy, and the performance often deviates significantly from the expected performance. There are often prolonged shutdown and inefficient heating cycles, both of which may be unnecessary. Thus, further understanding of the effects of ice formation on wind turbine blades is required. Experimental and computational studies are undertaken to examine the effects of ice formation on wind turbine performance. The experiments are conducted on a dynamically scaled model in the wind turbine test facility at ETH Zurich. The central element of the facility is a water towing tank that enables full-scale nondimensional parameters to be more closely matched on a subscale model than in a wind tunnel. A novel technique is developed to yield accurate measurements of wind turbine performance, incorporating the use of a torquemeter with a series of systematic measurements. These measurements are complemented by predictions obtained using a commercial Reynolds-Averaged Navier–Stokes computational fluid dynamics code. The measured and predicted results show that icing typical of that found at the Guetsch Alpine Test Site (2330 m altitude) can reduce the power coefficient by up to 22% and the annual energy production (AEP) by up to 2%. Icing in the blade tip region, 95–100% blade span, has the most pronounced effect on the wind turbine’s performance. For wind turbines in more extreme icing conditions typical of those in Bern Jura, for example, icing can result in up to 17% losses in AEP. Icing at high altitude sites does not cause significant AEP losses, whereas icing at lower altitude sites can have a significant impact on AEP. Thus, the classification of icing is a key to the further development of prediction tools. It would be advantageous to tailor blade heating for prevention of ice buildup on the blade’s tip region. An “extreme” icing predictive tool for the project development of wind farms in regions that are highly susceptible to icing would be beneficial to wind energy developers.


Author(s):  
N. Asmuin ◽  
◽  
Basuno B. ◽  
M.F. Yaakub ◽  
N.A. Nor Salim ◽  
...  

The present work uses the method of Blade Element Momentum Theory as suggested by Hansen. The method applied to three blade models adopted from Rahgozar S. with the airfoil data used the data provided by Wood D. The wind turbine performance described in term of the thrust coefficient C_T, torque coefficient C_Q and the power coefficient C_p . These three coefficient can be deduced from the Momentum theory or from the Blade element Theory(BET). The present work found the performance coefficient derived from the Momentum theory tent to over estimate. It is suggested to used the BET formulation in presenting these three coefficients. In overall the Blade Element Momentum Theory follows the step by step as described by Hansen work well for these three blade models. However a little adjustment on the blade data is needed. To the case of two bladed horizontal axis wind


Author(s):  
Stavros N. Leloudas ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

The Blade Element Momentum (BEM) theory is nowadays the cornerstone of the horizontal axis wind turbine design, as its application allows for the accurate aerodynamic simulation and power output prediction of wind turbine rotors in a remarkably short period of time. Therefore, efforts have been made for the extension of the classic BEM theory to the performance analysis of Diffuser Augmented Wind Turbines (DAWTs) as well. In this study, the development and assessment of such an in-house BEM code are presented. The proposed computational model is based on the modification of the momentum part of the classical BEM theory; thus, it is capable to account for the diffuser’s effect on the calculation of the axial and tangential induction factors, through the utilization of the velocity speed-up distribution over the rotor plane of the unloaded diffuser. Furthermore, a detailed Glauert’s correction model, which employs Buhl’s modification, specially tailored for the DAWT case is included, to deal with the high values of the axial induction factor. The accuracy of the model is assessed against numerical and experimental results available in the literature, while the impact of the Prandtl’s tip loss correction model on the rotor’s predicted power output is also examined.


Author(s):  
Dini Oktavitasari ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Syamsul Hadi

An optimal design of an aligned configuration using a vertical axis wind turbine especially a crossflow wind turbine to increase rate and power production is one of the problems in wind energy. In the present work, an experimental investigation is presented to evaluate the impact of the wake effect on the dynamic performance of an aligned configuration and compared characteristics of the crossflow wind turbine for 12 x 12 number of blades. In arrays, the spacing parameters of the crossflow wind turbines were conducted with three different spacings (1D; 2D; and 3D) where a crossflow wind turbine was operating downstream of a co-rotating pair. The crossflow wind turbines arranged in inline configurations. Experiments were carried out in a closed-circuit WT-30 aerodynamic laboratory wind tunnel in a ratio velocity of 7.51 m/s. Measurement data of each wind turbines were reported in terms of dimensionless power coefficient (CP) and torque coefficients (CT) for dynamic performance analysis. The experimental results were aligned configuration spacing and the number of blades affects enhancement aerodynamic performance of the downstream crossflow wind turbines. The best performance turbine spacings in aligned configurations are 3D. Wind flow has a distance to be streamlined.


2021 ◽  
Author(s):  
Anirudh P ◽  
Ratna Kishore Velamati ◽  
Srinath K S ◽  
Unnikrishnan D

Abstract The demand for wind turbines has increased ever since fossil fuels showed signs of quick depletion. Among wind turbines, Vertical Axis Wind Turbine (VAWT) is compact, produces less noise, is omnidirectional, resilient to turbulent flow, and is easy to maintain. The power generated by a VAWT is a function of a non-dimensional geometric parameter known as solidity (s), which is a function of turbine diameter (D), blade chord (c) and the number of blades (n). The present work analyses the impact of solidity (0.12 and 0.18) as a complete non-dimensional parameter on wind turbine performance. Each parameter of solidity is varied, keeping any one of the parameters constant and numerically studied for its performance across a range of tip speed ratios (TSR). For each solidity, six different combinations of VAWT geometric parameters were analyzed. In all the cases, the chord Reynolds number is kept constant. CFD simulation was performed on the Darrieus H-type (NACA0018 airfoil) VAWT. Two dimensional (2D) computational domains are used to study the effect on the turbine’s performance as the solidity studied is less than 0.4. Unsteady Reynolds-Averaged Navier-strokes (URANS) equation is used to solve the CFD model using ANSYS Fluent 19.1 with 4-equation transition SST k-ω for turbulence modelling. The comprehensive study of the turbine performance keeping the turbine operation within a constant Re number range shows the Coefficient of Performance (Cp) overlaps for a given solidity.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


2021 ◽  
pp. 1-25
Author(s):  
K.A.R. Ismail ◽  
Willian Okita

Abstract Small wind turbines are adequate for electricity generation in isolated areas to promote local expansion of commercial activities and social inclusion. Blade element momentum (BEM) method is usually used for performance prediction, but generally produces overestimated predictions since the wake effects are not precisely accounted for. Lifting line theory (LLT) can represent the blade and wake effects more precisely. In the present investigation the two methods are analyzed and their predictions of the aerodynamic performance of small wind turbines are compared. Conducted simulations showed a computational time of about 149.32 s for the Gottingen GO 398 based rotor simulated by the BEM and 1007.7 s for simulation by the LLT. The analysis of the power coefficient showed a maximum difference between the predictions of the two methods of about 4.4% in the case of Gottingen GO 398 airfoil based rotor and 6.3% for simulations of the Joukowski J 0021 airfoil. In the case of the annual energy production a difference of 2.35% is found between the predictions of the two methods. The effects of the blade geometrical variants such as twist angle and chord distributions increase the numerical deviations between the two methods due to the big number of iterations in the case of LLT. The cases analyzed showed deviations between 3.4% and 4.1%. As a whole, the results showed good performance of both methods; however the lifting line theory provides more precise results and more information on the local flow over the rotor blades.


2017 ◽  
Vol 46 (2) ◽  
pp. 224-241 ◽  
Author(s):  
Jacob R. Fooks ◽  
Kent D. Messer ◽  
Joshua M. Duke ◽  
Janet B. Johnson ◽  
Tongzhe Li ◽  
...  

This study uses an experiment where ferry passengers are sold hotel room “views” to evaluate the impact of wind turbines views on tourists’ vacation experience. Participants purchase a chance for a weekend hotel stay. Information about the hotel rooms was limited to the quality of the hotel and its distance from a large wind turbine, as well as whether or not a particular room would have a view of the turbine. While there was generally a negative effect of turbine views, this did not hold across all participants, and did not seem to be effected by distance or hotel quality.


2017 ◽  
Vol 2 (2) ◽  
pp. 403-413
Author(s):  
Francesco Grasso ◽  
Domenico Coiro ◽  
Nadia Bizzarrini ◽  
Giuseppe Calise

Abstract. Nowadays, all the modern megawatt-class wind turbines make use of pitch control to optimise the rotor performance and control the turbine. However, for kilowatt-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. In the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance is supposed to guarantee high wind turbine performance but also the necessary machine control capabilities. In the present work, the design of a new airfoil dedicated to stall machines is discussed. The design strategy makes use of a numerical optimisation scheme, where a gradient-based algorithm is coupled with the RFOIL code and an original Bezier-curves-based parameterisation to describe the airfoil shape. The performances of the new airfoil are compared in free- and fixed-transition conditions. In addition, the performance of the rotor is analysed, comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.


Sign in / Sign up

Export Citation Format

Share Document