Application of a Smooth Approximation of the Schmid's Law to a Single Crystal Gas Turbine Blade

Author(s):  
Alessandro D. Ramaglia

In industrial practice the choice of the most suitable material model does not solely rely on the ability of the model in describing the intended phenomena. Most of the choice is often based on a trade-off between a great variety of factors. Robustness, cost, and time for the minimum testing campaign necessary to identify the model and preexisting standard practices are only a few of them. This is particularly true in the case of nonlinear structural analyses because of their intrinsic difficulties and the higher level of skills needed to carefully exploit their full potential. So, despite the great progress in this field, in certain cases it is desirable to use plasticity models that are rate independent and possess very simple hardening terms. This is for example the case in which long term creep can be an issue or when the designer may want to treat separately different phenomena contributing to inelastic deformation. If the material to be modeled is isotropic, commercial finite element (FE) packages are able to deal with such problems in almost every case. On the contrary for anisotropic materials like Ni-based superalloys cast as single crystals, the choice of the designer is more limited and despite the large amount of research literature on the subject, single crystal constitutive models remain quite difficult to handle, to implement into FE codes, to calibrate, and to validate. Such difficulties, coupled with the unavoidable approximations introduced by any model, often force the practice of using oversimplifications of the material behavior. In what follows this problem is addressed by showing how single crystal plasticity modeling can be reduced to the adoption of an anisotropic elastic behavior with a sort of von Mises yield surface.

Author(s):  
Alessandro D. Ramaglia

In industrial practice, the choice of the most suitable material model does not solely rely on the ability of the model in describing the intended phenomena. Most of the choice is often based on a trade-off between a great variety of factors. Robustness, cost and time for the minimum testing campaign necessary to identify the model and pre-existing standard practices are only a few of them. This is particularly true in the case of nonlinear structural analyses because of their intrinsic difficulties and the higher level of skills needed to carefully exploit their full potential. So, despite the great progress in this field, in certain cases it is desirable to use plasticity models that are rate-independent and possess very simple hardening terms. This is for example the case in which long term creep can be an issue or when the designer may want to treat separately different phenomena contributing to inelastic deformation. If the material to be modelled is isotropic, commercial FE packages are able to deal with such problems in almost every case. On the contrary for anisotropic materials like Ni-based super-alloys cast as single crystals, the choice of the designer is more limited and despite the large amount of research literature on the subject, single crystal constitutive models remain quite difficult to handle, to implement into FE codes, to calibrate and to validate. Such difficulties, coupled with the unavoidable approximations introduced by any model, often force the practice of using oversimplifications of the material behaviour. In what follows this problem is addressed by showing how single crystal plasticity modelling can be reduced to the adoption of an anisotropic elastic behaviour with a sort of von Mises yield surface.


Author(s):  
Aref Ghaderi ◽  
Vahid Morovati ◽  
Pouyan Nasiri ◽  
Roozbeh Dargazany

Abstract Material parameters related to deterministic models can have different values due to variation of experiments outcome. From a mathematical point of view, probabilistic modeling can improve this problem. It means that material parameters of constitutive models can be characterized as random variables with a probability distribution. To this end, we propose a constitutive models of rubber-like materials based on uncertainty quantification (UQ) approach. UQ reduces uncertainties in both computational and real-world applications. Constitutive models in elastomers play a crucial role in both science and industry due to their unique hyper-elastic behavior under different loading conditions (uni-axial extension, biaxial, or pure shear). Here our goal is to model the uncertainty in constitutive models of elastomers, and accordingly, identify sensitive parameters that we highly contribute to model uncertainty and error. Modern UQ models can be implemented to use the physics of the problem compared to black-box machine learning approaches that uses data only. In this research, we propagate uncertainty through the model, characterize sensitivity of material behavior to show the importance of each parameter for uncertainty reduction. To this end, we utilized Bayesian rules to develop a model considering uncertainty in the mechanical response of elastomers. As an important assumption, we believe that our measurements are around the model prediction, but it is contaminated by Gaussian noise. We can make the noise by maximizing the posterior. The uni-axial extension experimental data set is used to calibrate the model and propagate uncertainty in this research.


2010 ◽  
Vol 10 (01) ◽  
pp. 151-166 ◽  
Author(s):  
YUAN LI ◽  
GLADIUS LEWIS

One feature of the literature on finite element analysis of models of cervical spine segment(s) is that an assortment of constitutive models has been used for the elastic behavior of the annulus fibrosus (AF) and the nucleus pulposus (NF). The extent to which the model assigned to each of these tissues affects the values of the biomechanical parameters of interest of the model is lacking. This issue was the subject of the present study. We used a three-dimensional solid model of the C4–C6 motion segment units (which comprised the vertebral bodies, the bony posterior elements (transverse processes, pedicles, laminae, spinous processes, and facet joints), the intervertebral discs (IVDs), the endplates, and the five major ligaments) and eight combinations of constitutive models. It was found that (1) the influence of the constitutive material models used depended on the tissue considered, with some, such as the posterior endplate of C5 and the cancellous bone of C6, showing marked sensitivity, while others, such as the cancellous bone of C4 and the cortical bone of C5, were moderately affected; and (2) the biomechanical performance of the spine model is more sensitive to the material behavior model used for the AF than it is to that used for the NF. These results suggest that experimental and computational efforts expended in obtaining the most appropriate constitutive model for the elastic behavior of the two parts of the IVD, in particular the AF, are justified.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
H. Darijani ◽  
R. Naghdabadi

In this paper, decomposition of the total strain into elastic and plastic parts is investigated for extension of elastic-type constitutive models to finite deformation elastoplasticity. In order to model the elastic behavior, a Hookean-type constitutive equation based on the logarithmic strain is considered. Based on this constitutive equation and assuming the deformation theory of Hencky as well as the yield criteria of von Mises, the elastic-plastic behavior of materials at finite deformation is modeled in the case of the proportional loading. Moreover, this elastoplastic model is applied in order to determine the stress distribution in thick-walled cylindrical pressure vessels at finite deformation elastoplasticity.


2008 ◽  
Vol 76 (1) ◽  
Author(s):  
N. Gil-Negrete ◽  
J. Vinolas ◽  
L. Kari

A nonlinear rubber material model is presented, where influences of frequency and dynamic amplitude are taken into account through fractional order viscoelasticity and plasticity, respectively. The problem of simultaneously modeling elastic, viscoelastic, and friction contributions is removed by additively splitting them. Due to the fractional order representation mainly, the number of parameters of the model remains low, rendering an easy fitting of the values from tests on material samples. The proposed model is implemented in a general-purpose finite element (FE) code. Since commercial FE codes do not contain any suitable constitutive model that represents the full dynamic behavior of rubber compounds (including frequency and amplitude dependent effects), a simple approach is used based on the idea of adding stress contributions from simple constitutive models: a mesh overlay technique, whose basic idea is to create a different FE model for each material definition (fractional derivative viscoelastic and elastoplastic), all with identical meshes but with different material definition, and sharing the same nodes. Fractional-derivative viscoelasticity is implemented through user routines and the algorithm for that purpose is described, while available von Mises’ elastoplastic models are adopted to take rate-independent effects into account. Satisfactory results are obtained when comparing the model results with tests carried out in two rubber bushings at a frequency range up to 500 Hz, showing the ability of the material model to accurately describe the complex dynamic behavior of carbon-black filled rubber compounds.


2020 ◽  
pp. 108128652093236
Author(s):  
Ronald J Giardina ◽  
Dongming Wei

Several assumptions are commonly made throughout the literature with regard to the mechanical expression of material behavior under a Ramberg–Osgood material model; specifically, the negligible effects of nonlinearity on the elastic behavior of the material. These assumptions do not reflect the complicated nonlinearity implied by the Ramberg–Osgood expression, which can lead to significant differences in the member model response from the true material behavior curve. With the proposed approach, new explicit results for Ramberg–Osgood materials are achieved without relying on these assumptions of material and model expression. The only assumptions present within the proposed model are the standard mechanical assumptions of an Euler beam. A general nonlinear moment–curvature relationship for monotone material behaviors is constructed. Large deflections of cantilever Euler beams with rectangular cross-sections under a combined loading are modeled. Numerical validation of this new method against results already given in the literature for the special cases of linear and power-law material behaviors are provided. An analysis is presented for three common material behavior relationships, with a focus on how these relationships are expressed through the deflection of members under the application of force within the model; this analysis clearly demonstrates that the sub-yield nonlinear behavior of the Ramberg–Osgood expression can be significant. The distinctions between material behavior expression demonstrated in this analysis have been long overlooked within the literature. This work addresses a gap between the modeling of Ramberg–Osgood material behaviors and the implementation of that model in mechanics.


2019 ◽  
Vol 19 (3) ◽  
pp. 861-874 ◽  
Author(s):  
Monika Stipsitz ◽  
Philippe K. Zysset ◽  
Dieter H. Pahr

AbstractAn efficient solver for large-scale linear $$\mu \hbox {FE}$$μFE simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of $${36}\,{{\upmu }\hbox {m}}$$36μm. Suitable material parameters were identified based on two biopsies by comparison with axial tension and compression experiments. The good parallel performance and low memory footprint of the solver were preserved. Excellent correlation of the maximum apparent stress was found between simulations and experiments ($$R^2 > 0.97$$R2>0.97). The development of local damage regions was observable due to the nonlinear nature of the simulations. A novel elasticity limit was proposed based on the local damage information. The elasticity limit was found to be lower than the 0.2% yield point. Systematic differences in the yield behavior of biopsies under apparent compression and tension loading were observed. This indicates that damage distributions could lead to more insight into the failure mechanisms of trabecular bone.


Author(s):  
Robert Scheidemann ◽  
Linan Qiao ◽  
Karsten Müller

The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


2011 ◽  
Vol 70 ◽  
pp. 225-230 ◽  
Author(s):  
Agnieszka Derewonko ◽  
Andrzej Kiczko

The purpose of this paper is to describe the selection process of a rubber-like material model useful for simulation behaviour of an inflatable air cushion under multi-axial stress states. The air cushion is a part of a single segment of a pontoon bridge. The air cushion is constructed of a polyester fabric reinforced membrane such as Hypalon®. From a numerical point of view such a composite type poses a challenge since numerical ill-conditioning can occur due to stiffness differences between rubber and fabric. Due to the analysis of the large deformation dynamic response of the structure, the LS-Dyna code is used. Since LS-Dyna contains more than two-hundred constitutive models the inverse method is used to determine parameters characterizing the material on the base of results of the experimental test.


Sign in / Sign up

Export Citation Format

Share Document