High Sensitive Force Sensing Based on the Optical Fiber Coupling Loss

2013 ◽  
Vol 7 (1) ◽  
Author(s):  
Roozbeh Ahmadi ◽  
Muthukumaran Packirisamy ◽  
Javad Dargahi

In the present paper, an innovative miniaturized optical force sensor is introduced for use in medical devices such as minimally invasive robotic-surgery instruments. The sensing principle of the sensor relies on light transmission in optical fibers. Although the sensor is designed for use in surgical systems, it can be used in various other applications due to its novel features. The novelty of the sensor lies in offering four features in a single miniaturized package using a simple optical-based sensing principle. These four features are the high accuracy/resolution, the magnetic resonance compatibility, the electrical passivity, and the absence of drift in the measurement of continuous static force. The proposed sensor was micromachined using microsystems technology and tested. The sensor measures 18 mm, 4 mm, and 1 mm in length, width, and thickness, respectively. The sensor was calibrated and its performance under both static and dynamic loading conditions was investigated. The experimental test results demonstrate a 0.00–2.00 N force range with an rms error of approximately 2% of the force range. Its resolution is 0.02 N. The characteristics of the sensor such as its size, its measurement range, and its sensitivity are also easily tunable.

2007 ◽  
Vol 1 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Pietro Valdastri ◽  
Keith Houston ◽  
Arianna Menciassi ◽  
Paolo Dario ◽  
Arne Sieber ◽  
...  

This paper reports a miniaturized triaxial force sensorized cutting tool for minimally invasive robotic surgery. This device exploits a silicon-based microelectromechanical system triaxial force sensor that acts as the core component of the system. The outer diameter of the proposed device is less than 3mm, thus enabling the insertion through a 9 French catheter guide. Characterization tests are performed for both normal and tangential loadings. A linear transformation relating the sensor output to the external applied force is introduced in order to have a triaxial force output in real time. Normal force resolution is 8.2bits over a force range between 0N and 30N, while tangential resolution is 7 bits over a range of 5N. Force signals with frequencies up to 250Hz can successfully be detected, enabling haptic feedback and tissue mechanical properties investigation. Preliminary ex vivo muscular tissue cutting experiments are introduced and discussed in order to evaluate the device overall performances.


Author(s):  
Pietro Valdastri ◽  
Keith Houston ◽  
Arianna Menciassi ◽  
Paolo Dario ◽  
Arne Sieber ◽  
...  

This paper reports a miniaturised triaxial force sensorized cutting tool for minimally invasive robotic surgery. This device exploits a silicon based MEMS triaxial force sensor that acts as the core component of the system. The outer diameter of the proposed device is less than 3 mm, thus enabling the insertion through a 9 French catheter guide. Characterization tests are performed for both normal and tangential loadings. A linear transformation relating the sensor output to the external applied force is introduced in order to have a triaxial force output in real time. Normal force resolution is 8.2 bits over a force range between 0 N and 30 N, while tangential resolution is 8.1 over a range of 6 N. Force signals with frequencies up to 250 Hz can successfully be detected, enabling haptic feedback and tissue mechanical properties investigation. Preliminary ex vivo muscular tissue cutting experiments are introduced and discussed in order to evaluate the device overall performances.


2004 ◽  
Vol 115 (2-3) ◽  
pp. 447-455 ◽  
Author(s):  
Jan Peirs ◽  
Joeri Clijnen ◽  
Dominiek Reynaerts ◽  
Hendrik Van Brussel ◽  
Paul Herijgers ◽  
...  

Author(s):  
Jumpei Arata ◽  
Shogo Terakawa ◽  
Hideo Fujimoto ◽  
James Sulzer ◽  
Roger Gassert

Investigations of human motor control using functional magnetic resonance imaging (fMRI) are increasingly receiving attention, with applications in fields such as motor learning and rehabilitation. In these neuroscience studies, force and position sensors are used to control haptic devices and safely interact with the human motion in an MR environment. However, conventional force sensors such as strain gauges are known to cause electromagnetic interference originating from electrical cables, transducers, and electronics. Light transmission through optical fibers is one alternative that avoids these problems. Since optical fibers do not produce electromagnetic noise, they can be used in an MR environment without electromagnetic interference. In this paper, we propose a novel design of an MRI-compatible grasping force sensor based on these principles. The sensor structure was designed to fit into an MRI scanner with its inclined double parallel mechanism, and was specifically adapted to precision grip tasks. This paper presents the sensor design and preliminary characterization in a non-MR environment.


Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 493 ◽  
Author(s):  
Jorge Díez ◽  
José Catalán ◽  
Andrea Blanco ◽  
José García-Perez ◽  
Francisco Badesa ◽  
...  

2014 ◽  
Vol 85 (3) ◽  
pp. 035003 ◽  
Author(s):  
V. T. A. Oiko ◽  
B. V. C. Martins ◽  
P. C. Silva ◽  
V. Rodrigues ◽  
D. Ugarte

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1375
Author(s):  
Junji Pu ◽  
Kai Zeng ◽  
Yulie Wu ◽  
Dingbang Xiao

In recent years, the optical accelerometer based on the optical trapping force effect has gradually attracted the attention of researchers for its high sensitivity and high measurement accuracy. However, due to its large size and the complexity of optical path adjustment, the optical force accelerometers reported are only suitable for the laboratory environment up to now. In this paper, a miniature optical force dual-axis accelerometer based on the miniature optical system and a particles cavity which is prepared by Micro-Electro-Mechanical Systems (MEMS) technology is proposed. The overall system of the miniature optical levitation including the miniature optical system and MEMS particles cavity is a cylindrical structure with a diameter of about 10 mm and a height of 33 mm (Φ 10 mm × 33 mm). Moreover, the size of this accelerometer is 200 mm × 100 mm × 100 mm. Due to the selected light source being a laser diode light source with elliptical distribution, it is sensitive to the external acceleration in both the long axis and the short axis. This accelerometer achieves a measurement range of ±0.17 g–±0.26 g and measurement resolution of 0.49 mg and 1.88 mg. The result shows that the short-term zero-bias stability of the two orthogonal axes of the optical force accelerometer is 4.4 mg and 9.2 mg, respectively. The main conclusion that can be drawn is that this optical force accelerometer could provide an effective solution for measuring acceleration with an optical force effect for compact engineering devices.


Author(s):  
LUCIA JAMBOLA ◽  
ARSYAD RAMADHAN DARLIS ◽  
LITA LIDYAWATI ◽  
DZIKRI FACHRI HUSAENI

ABSTRAKSistem komunikasi suara bawah air telah dikenal sejak lama, diantaranya sonar dan akustik. Seiring perkembangan zaman dan kemajuan teknologi, kini hadir komunikasi dengan media transmisi cahaya tampak yaitu Visible Light Communication (VLC) yang dapat diterapkan pada komunikasi bawah air. Pada penelitian ini telah dilakukan komunikasi suara bawah air (simplex) menggunakan VLC, dengan media akuarium berisi air dan beberapa pengujian diantaranya menggunakan color filter, didapat hasil pengujian terbaik yaitu tegangan 4,4 Vpp dan frekuensi 3,003 kHz untuk color filter yellow, pengujian menggunakan lensa didapat hasil pengujian terbaik yaitu tegangan 4,4 Vp-p dan frekuensi 3,051 kHz untuk lensa (+50), dan pengujian terakhir menggunakan lampu UV didapat hasil pengujian terbaik dengan tegangan 4,4 Vp-p dan frekuensi 3,010 kHz. Implementasi sistem VLC ini menunjukkan hasil yang baik dan layak untuk diterapkan pada komunikasi suara bawah air (simplex).Kata kunci: VLC, Komunikasi Suara Bawah Air, Simplex. ABSTRACTUnderwater voice communication systems have been known for a long time, including sonar and acoustics. Along with the development and advancement of technology, now there is communication with visible light transmission media, namely Visible Light Communication (VLC) which can be applied to underwater communication. Under this study underwater voice communication (simplex) has been carried out using VLC, with aquarium media containing water and several tests including using a color filter, the best test results obtained are voltage 4.4 Vp-p and frequency 3.003 kHz for yellow color filter, testing using the lens obtained the best test results namely voltage 4.4 Vp-p and frequency 3.051 kHz for lenses (+50), and the last test using UV lights obtained the best test results with a voltage of 4.4 Vp-p and a frequency of 3.010 kHz. The implementation of the VLC system shows good and feasible results to be applied to underwater voice communication (simplex).Keywords: VLC, Underwater Voice Communication, Simplex.


Optik ◽  
2018 ◽  
Vol 168 ◽  
pp. 684-691
Author(s):  
Xiaolan Li ◽  
Yanxin Zhang ◽  
Weigang Zhang ◽  
TiEyi Yan ◽  
Yunshan Zhang

Sign in / Sign up

Export Citation Format

Share Document