Coupled Thermomechanical Modeling of Small Volume FCC Metals

Author(s):  
Danial Faghihi ◽  
George Z. Voyiadjis ◽  
Taehyo Park

The mechanical and thermal behavior of small volume metallic compounds on the fast transient time are addressed in this work through developing a thermodynamically consistent nonlocal framework. In this regard, an enhanced gradient plasticity theory is coupled with the application of the micromorphic approach to the temperature variable. The yield function of the VA–FCC (Voyiadjis Abed Face Centered Cubic) model based on the concept of thermal activation energy and the dislocations interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which provided the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the nonlocal evolution of temperature is addressed by incorporating the microstructural interaction effect in the fast transient process using two time scales in the microscopic heat equation.

Author(s):  
Yusuke Masao ◽  
Mitsuhiro Matsumoto

In order to solve a Boltzmann transport equation (BTE) of phonons for investigating heat conduction in non-metallic solids, we propose to employ a DSMC (direct simulation Monte Carlo) scheme to simulate dynamics of phonons in analogy with rarefied gas. In this paper, we describe the DSMC scheme for phonon dynamics and present some results with our prototype codes for a face-centered cubic model. The dynamics of phonons with two branches of acoustic modes is discussed, in the case where the distribution of phonons in strong nonequilibrium situation is driven into equilibrium.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4422-4425 ◽  
Author(s):  
B. J. CHOI ◽  
S. H. KIM ◽  
Y. T. JEON ◽  
J. Y. MOON ◽  
G. H. LEE ◽  
...  

We produced maghemite (γ- Fe 2 O 3) nanoparticles with average particle diameters of 6, 7, and 12 nm and investigated their magnetic properties. The structure was determined to be face centered-cubic with a lattice constant of a = 8.350±2 Å, similar to the bulk material for all samples. We observed that the γ- Fe 2 O 3 nanoparticles, with average particle diameters of 6 and 7 nm, were superparamagnetic at room temperature with blocking temperatures of 138 and 168 K, respectively. Those with an average particle diameter of 12 nm are ferrimagnetic at room temperature.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1258
Author(s):  
Dominic Linsler ◽  
Friederike Ruebeling ◽  
Christian Greiner

Subsurface microstructures influence the friction and wear behavior of metallic tribological systems, among other factors. To gain a basic understanding of the microstructural changes occurring during sliding processes, face-centered cubic model systems, for example a copper system with a sapphire sphere sliding against it, were previously characterized. Such systems showed the evolution of the dislocation self-organization phenomenon called the dislocation trace line. To test the occurrence of this dislocation arrangement in bcc metals, in this study a ruby ball was slid against electropolished bcc iron under an increasing normal load. The wear track topography and subsurface microstructure were characterized using white light interferometry and scanning transmission electron microscopy. The analysis suggested that at least for bcc iron, the evolution of a dislocation trace line is connected with the onset of pronounced plastic deformation.


2010 ◽  
Vol 02 (03) ◽  
pp. 489-513 ◽  
Author(s):  
ZHI MIN XU ◽  
WEI XU ZHANG ◽  
T. J. WANG

The objective of this work is to numerically investigate the elastic–plastic deformation of closed-cell foams incorporating the effect of inner gas pressure. Both body-centered cubic (BCC) and face-centered cubic (FCC) arrangements of pores are considered in analysis. It is seen that the inner gas pressure has a significant effect on the plastic deformation of closed-cell foams, which is different for the foams with different microstructures and is discussed in detail. The inner gas pressure results in the asymmetry of uniaxial tensile-compressive stress–strain curves and the nominal Poisson's ratio. It is shown that the inner gas pressure makes the yield surface move to the negative direction of the hydrostatic axis in the plane of equivalent and hydrostatic stresses, and the moving distance is equal to the magnitude of inner gas pressure in the foams. Moreover, a new yield function incorporating the effect of inner gas pressure is developed for closed-cell foams. The material constants in the yield function depend on the microstructures of the foams.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


Author(s):  
V. N. Filimonenko ◽  
M. H. Richman ◽  
J. Gurland

The high temperatures and pressures that are found in a spark gap during electrical discharging lead to a sharp phase transition and structural transformation in the surface layer of cemented carbides containing WC and cobalt. By means of X-ray diffraction both W2C and a high-temperature monocarbide of tungsten (face-centered cubic) were detected after electro-erosion. The W2C forms as a result of the peritectic reaction, WC → W2C+C. The existence and amount of the phases depend on both the energy of the electro-spark discharge and the cobalt content. In the case of a low-energy discharge (i.e. C=0.01μF, V = 300v), WC(f.c.c.) is generally formed in the surface layer. However, at high energies, (e.g. C=30μF, V = 300v), W2C is formed at the surface in preference to the monocarbide. The phase transformations in the surface layer are retarded by the presence of larger percentages of cobalt.Metallographic examination of the electro-eroded surfaces of cemented carbides was carried out on samples with 5-30% cobalt content. The specimens were first metallographically polished using diamond paste and standard procedures and then subjected to various electrical discharges on a Servomet spark machining device. The samples were then repolished and etched in a 3% NH4OH electrolyte at -0.5 amp/cm2. Two stage plastic-carbon replicas were then made and shadowed with chromium at 27°.


Author(s):  
N.-H. Cho ◽  
S. McKernan ◽  
C.B. Carter ◽  
K. Wagner

Interest has recently increased in the possibility of growing III-V compounds epitactically on non-polar substrates to produce device quality material. Antiphase boundaries (APBs) may then develop in the GaAs epilayer because it has sphalerite structure (face-centered cubic with a two-atom basis). This planar defect may then influence the electrical behavior of the GaAs epilayer. The orientation of APBs and their propagation into GaAs epilayers have been investigated experimentally using both flat-on and cross-section transmission electron microscope techniques. APBs parallel to (110) plane have been viewed at the atomic resolution and compared to simulated images.Antiphase boundaries were observed in GaAs epilayers grown on (001) Ge substrates. In the image shown in Fig.1, which was obtained from a flat-on sample, the (110) APB planes can be seen end-on; the faceted APB is visible because of the stacking fault-like fringes arising from a lattice translation at this interface.


Author(s):  
Karimat El-Sayed

Lead telluride is an important semiconductor of many applications. Many Investigators showed that there are anamolous descripancies in most of the electrophysical properties of PbTe polycrystalline thin films on annealing. X-Ray and electron diffraction studies are being undertaken in the present work in order to explain the cause of this anamolous behaviour.Figures 1-3 show the electron diffraction of the unheated, heated in air at 100°C and heated in air at 250°C respectively of a 300°A polycrystalline PbTe thin film. It can be seen that Fig. 1 is a typical [100] projection of a face centered cubic with unmixed (hkl) indices. Fig. 2 shows the appearance of faint superlattice reflections having mixed (hkl) indices. Fig. 3 shows the disappearance of thf superlattice reflections and the appearance of polycrystalline PbO phase superimposed on the [l00] PbTe diffraction patterns. The mechanism of this three stage process can be explained on structural basis as follows :


Sign in / Sign up

Export Citation Format

Share Document