A Contribution to Improve the Accuracy of Chatter Prediction in Machine Tools Using the Stability Lobe Diagram

Author(s):  
Raphael Galdino dos Santos ◽  
Reginaldo Teixeira Coelho

The chatter phenomenon can severely limit the power available for milling. The stability lobe diagram (SLD) is a very fast and simple method to predict the chatter free zone, allowing the selection of the most adequate spindle speed and depth of cut for higher productivity. However, the data used to calculate the SLD, coming from frequency response functions (FRFs), must be acquired adequately to improve the predictability. FRFs result differently depending on the activation of the spindle electronic control. The present work uses SLDs to investigate these differences and experimental end milling tests to assess the accuracy of SLDs curves. Results indicate that the inclusion of spindle electronic control provides better accuracy in predicting the chatter in milling.

Author(s):  
Mahdi Eynian ◽  
Sunday Ogheneochuko Usino ◽  
Ana Esther Bonilla Hernández

Surface roughness is an important aspect of a machined piece and greatly influences its performance. This paper presents the surface roughness of end-milled aluminium plates in stable and unstable machining conditions at various spindle speed and depth of cuts machined with cylindrical end-mills. The surface roughness is measured using high-resolution surface replicas with a white light interferometry (WLI) microscope. The measurements of the end-milled floors show that the surface roughness as long as the cutting is performed in stable conditions is insensitive to the depth of cut or spindle speed. In contrast, within chattering conditions, which appear according to stability lobes, surface roughness values increase almost 100%. While at the valleys of the stability lobe diagram, there is a gradual increase in roughness, at the peaks of the stability lobe, the transition from the stable to unstable condition occurs with a sudden increase of the roughness values. In the study of down-milled walls, while the roughness increases with the depth of cut within both the stable and the chattering regions, the transition from the stable to chattering condition can lead to a much larger increase in the surface roughness. These results could be used for strategic selection of operation considering the needs of robustness and possible variation of dynamic parameters that can affect the position of the cutting conditions within the stability lobe diagrams.


Author(s):  
Y. Nakano ◽  
H. Takahara

Chatter can result in the poor machined surface, tool wear and reduced product quality. Chatter is classified into the forced vibration and the self-excited vibration in perspective of the generation mechanism. It often happens that the self-excited chatter becomes problem practically because this causes heavy vibration. Regenerative chatter due to regenerative effect is one of the self-excited chatter and generated in the most cutting operations. Therefore, it is very important to quench or avoid regenerative chatter (hereafter, simply called chatter). It is well known that chatter can be avoided by selecting the optimal cutting conditions which are determined by using the stability lobe of chatter. The stability lobe of chatter represents the boundary between stable and unstable cuts as a function of spindle speed and depth of cut. However, it is difficult to predict the stability lobe of chatter perfectly because the prediction accuracy of it depends on the tool geometry, the vibration characteristics of the tool system and the machine tool and the material behavior of the workpiece. In contrast, it is made clear that the stability lobe of chatter has been elevated in the wide range of spindle speed by the vibration absorber in the turning operations. However, it should be noted that none of the previous work has actually applied the vibration absorbers to the rotating tool system in the machining center and examined the effect of the vibration absorbers on chatter in the end milling operations to the best of authors’ knowledge. In this paper, the effect of the vibration absorbers on regenerative chatter generated in the end milling operations is qualitatively evaluated by the stability analysis and the cutting test. It is made clear the relationship between the suppression effect of the vibration absorbers and the tuning parameters of them. It is shown that the greater improvement in the critical axial depth of cut is observed in the wide range of spindle speed by the properly tuned vibration absorbers.


2018 ◽  
Vol 175 ◽  
pp. 02002
Author(s):  
Charles M. Zheng ◽  
Chou-Fu Liang ◽  
Hai-Yi Cai ◽  
Shui-Shen Zhang

Traditionally, forecasting stability lobe diagram in milling is limited by complex damping identification procedures, so only structural damping from the impact experiment is used for predicting stability lobe diagram in most milling cases. In this study, by using the mathematical expressions among damping ratio, “critical limiting depth of cut” and “worst spindle speed”, it is shown that the predicted “critical limiting depth of cut” based on the structural damping divided by the measured “critical limiting depth of cut” can be approximately equal to the structural damping divided by the total damping. Based on this relationship, it is easy to estimate the total damping or process damping from the experiment within the selected spindle speeds. In practice, this paper presents an easy method for predicting stability lobe diagram using the total damping. At the same time, experiments have confirmed that using the prediction model of total damping can more accurately predict the stability lobe diagram.


2018 ◽  
Vol 148 ◽  
pp. 09003 ◽  
Author(s):  
Paweł Lajmert ◽  
Rafał Rusinek ◽  
Bogdan Kruszyński

In the paper a cutting stability in the milling process of nickel based alloy Inconel 625 is analysed. This problem is often considered theoretically, but the theoretical finding do not always agree with experimental results. For this reason, the paper presents different methods for instability identification during real machining process. A stability lobe diagram is created based on data obtained in impact test of an end mill. Next, the cutting tests were conducted in which the axial cutting depth of cut was gradually increased in order to find a stability limit. Finally, based on the cutting force measurements the stability estimation problem is investigated using the recurrence plot technique and Hilbert vibration decomposition method.


2009 ◽  
Vol 76-78 ◽  
pp. 624-629 ◽  
Author(s):  
Shan Shan Sun ◽  
W.X. Tang ◽  
H.F. Huang ◽  
Xi Qing Xu

A dynamics model is established considering gyroscopic effects due to high speed rotating spindle-tool system in ultra-high speed milling (USM). The proposed method for predicting stability enables a new 3D stability lobe diagram to be developed in the presence of gyroscopic effects, to cover all the intermediate stages of spindle speed. The influences of the gyroscopic effects on dynamics and stability in USM are analyzed. It is shown that the gyroscopic effects lower the resonance response frequencies of the spindle-tool system and the stable critical depth of cut in ultra-high speed milling.


2006 ◽  
Vol 526 ◽  
pp. 37-42 ◽  
Author(s):  
Francisco Javier Campa ◽  
Luis Norberto López de Lacalle ◽  
S. Herranz ◽  
Aitzol Lamikiz ◽  
A. Rivero

In this paper, a 3D dynamic model for the prediction of the stability lobes of high speed milling is presented, considering the combined flexibility of both tool and workpiece. The main aim is to avoid chatter vibrations on the finish milling of aeronautical parts, which include thin walls and thin floors. In this way the use of complex fixtures is eliminated. Hence, an accurate selection of both axial depth of cut and spindle speed can be accomplished. The model has been validated by means of a test device that simulates the behaviour of a thin floor.


2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

An analytical-experimental investigation of machine tool spindle decay and its effects of the system’s stability lobe diagram (SLD) is presented. A dynamic stiffness matrix (DSM)model for the vibration analysis of the OKADA VM500 machine spindle is developed and is validated against Finite Element Analysis (FEA).The model is then refined to incorporate flexibility of the system’s bearings, originally modeled as simply supported boundary conditions, where the bearings are modeled as linear spring elements.The system fundamental frequency obtained from the modal analysis carried on an experimental setup is then used to calibrate the DSM model by tuning the springs’ constants. The resulting natural frequency is also used to determine the 2D stability lobes diagram (SLD) for said spindle. Exploiting the presented approach and calibrated DSM model it is shown that a hypothetical 10% change in the natural frequency would result in a significant shift in the SLD of the spindle system, which should be taken into consideration to ensure chatter-free machining over the spindle’s life cycle.


2006 ◽  
Vol 128 (4) ◽  
pp. 901-912 ◽  
Author(s):  
Martin B. G. Jun ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

In Part II of this paper, experimental and analytical methods have been developed to estimate the values of the process faults defined in Part I of this paper. The additional faults introduced by the microend mill design are shown to have a significant influence on the total net runout of the microend mill. The dynamic model has been validated through microend milling experiments. Using the dynamic model, the effects of minimum chip thickness and elastic recovery on microend milling stability have been studied over a range of feed rates for which the cutting mechanisms vary from ploughing-dominated to shearing-dominated. The minimum chip thickness effect is found to cause feed rate dependent instability at low feed rates, and the range of unstable feed rates depends on the axial depth of cut. The effects of process faults on microend mill vibrations have also been studied and the influence of the unbalance from the faults is found to be significant as spindle speed is increased. The stability characteristics due to the regenerative effect have been studied. The results show that the stability lobes from the second mode of the microend mill, which are generally neglected in macroscale end milling, affect the microend mill stability significantly.


2013 ◽  
Vol 764 ◽  
pp. 83-89
Author(s):  
A. Kamaruddin ◽  
W.C. Pan ◽  
S.L. Ding ◽  
J. Mo

Study of predicting chatter has been around for many years. These studies are crucial for our understanding of machining processes and to enhance efficiency in manufacturing. This paper presents a new mechanism affecting the stability of machining process called mass induced damping. This effect is simulated numerically with tested values of initial parameters taken for impact tests of a thin-walled workpiece. Results from the simulation shows minor increment in allowable depth of cut by numerically calculated using stability lobe theory. This effect will open a new understanding how certain mechanical factors would affect the value of damping of a system.


Author(s):  
Chao Xu ◽  
Pingfa Feng ◽  
Dingwen Yu ◽  
Zhijun Wu ◽  
Jianfu Zhang

Despite recent advances and improvements in modeling and prediction of the dynamics of the machining process, an efficient machining process is limited due to chatter and instability of machining system. In fact, the machining system contains various kinds of joints, which cause difficulties in dynamics modeling, simulation and prediction. Moreover, the flexible support system results in large deformation and violent vibration of the workpiece when machining, and the thin-walled workpiece easily gives rise to the chatter of the machining system. Therefore, the dynamics of the flexible support system was considered to calculate stability lobe diagram in the modeling of milling process. The whole machining system was regarded as a closed loop composed by the machine tool structures, support, workpiece and machining process. In this paper, the receptance coupling (RC) method was introduced to predict the dynamics of the closed machining system. A milling process was taken for example to predict the chatter limitations using the dynamics of closed model. The mathematical model of the machining system (machine tool structures, spindle, holder and tool), together with the details of joint contacts, was given based on the RC method. The RC model was used to obtain the dynamics of the system, while receptance of the tool point was coupled. Based on the coupling model of the machining system, the depth limitations under different speeds were estimated for the technology parameter optimization in milling process. The response was considered to be the sum of the cutting point and the support system. The flexibility of the support system was considered to be the feedback of the cutting stiffness. By this means, the traditional model was modified to calculate the stability lobe diagram based on the dynamics of the spindle and support system. Furthermore, the milling experiment was carried out to verify the prediction results, and the dominant natural frequencies of receptance at tool point were obtained by modal testing to define the stability lobe diagram. It was found that the chatter results matched well with the stability lobes. It was concluded that the support system with poor stiffness might cause violent chatter especially when the workpiece was thin-walled. The cutting depth limitations of the flexible support system were lower than that of the rigid one. Moreover, this closed model of the machining system is appropriate for the chatter prediction of the flexible support system or thin-walled workpiece, so it is helpful for a better parameter optimization.


Sign in / Sign up

Export Citation Format

Share Document