Countermeasure Against Regenerative Chatter in End Milling Operations With Vibration Absorbers

Author(s):  
Y. Nakano ◽  
H. Takahara

Chatter can result in the poor machined surface, tool wear and reduced product quality. Chatter is classified into the forced vibration and the self-excited vibration in perspective of the generation mechanism. It often happens that the self-excited chatter becomes problem practically because this causes heavy vibration. Regenerative chatter due to regenerative effect is one of the self-excited chatter and generated in the most cutting operations. Therefore, it is very important to quench or avoid regenerative chatter (hereafter, simply called chatter). It is well known that chatter can be avoided by selecting the optimal cutting conditions which are determined by using the stability lobe of chatter. The stability lobe of chatter represents the boundary between stable and unstable cuts as a function of spindle speed and depth of cut. However, it is difficult to predict the stability lobe of chatter perfectly because the prediction accuracy of it depends on the tool geometry, the vibration characteristics of the tool system and the machine tool and the material behavior of the workpiece. In contrast, it is made clear that the stability lobe of chatter has been elevated in the wide range of spindle speed by the vibration absorber in the turning operations. However, it should be noted that none of the previous work has actually applied the vibration absorbers to the rotating tool system in the machining center and examined the effect of the vibration absorbers on chatter in the end milling operations to the best of authors’ knowledge. In this paper, the effect of the vibration absorbers on regenerative chatter generated in the end milling operations is qualitatively evaluated by the stability analysis and the cutting test. It is made clear the relationship between the suppression effect of the vibration absorbers and the tuning parameters of them. It is shown that the greater improvement in the critical axial depth of cut is observed in the wide range of spindle speed by the properly tuned vibration absorbers.

Author(s):  
Mahdi Eynian ◽  
Sunday Ogheneochuko Usino ◽  
Ana Esther Bonilla Hernández

Surface roughness is an important aspect of a machined piece and greatly influences its performance. This paper presents the surface roughness of end-milled aluminium plates in stable and unstable machining conditions at various spindle speed and depth of cuts machined with cylindrical end-mills. The surface roughness is measured using high-resolution surface replicas with a white light interferometry (WLI) microscope. The measurements of the end-milled floors show that the surface roughness as long as the cutting is performed in stable conditions is insensitive to the depth of cut or spindle speed. In contrast, within chattering conditions, which appear according to stability lobes, surface roughness values increase almost 100%. While at the valleys of the stability lobe diagram, there is a gradual increase in roughness, at the peaks of the stability lobe, the transition from the stable to unstable condition occurs with a sudden increase of the roughness values. In the study of down-milled walls, while the roughness increases with the depth of cut within both the stable and the chattering regions, the transition from the stable to chattering condition can lead to a much larger increase in the surface roughness. These results could be used for strategic selection of operation considering the needs of robustness and possible variation of dynamic parameters that can affect the position of the cutting conditions within the stability lobe diagrams.


2021 ◽  
Vol 20 (2) ◽  
pp. 127-131
Author(s):  
A. I. Germashev ◽  
V. A. Logominov ◽  
S. I. Dyadya ◽  
Y. V. Kozlova ◽  
V. A. Krishtal

The paper presents the results of research on the dynamics of end milling of thin-walled work-pieces having complex geometric shapes. Since the milling process with shallow depths of cut is characterized by high intermittent cutting, the proportion of regenerative vibrations decreases, and the effect of forced vibrations on the dynamics of the process, on the contrary, increases. The influence of  axial depth of cut on the vibrations arising during processing, and roughness of the processed surface have been studied in paper.  The experiments have been carried out in a wide range of changes in the spindle speed at different axial cutting depths.  Vibrations of a thin-walled work-piece  have been recorded with an inductive sensor and recorded in digital form. Then an oscillogram has been used to estimate the amplitude and frequency of oscillations. The profilograms of the machined surface have been analysed. Roughness has been evaluated by the parameter Ra. The results have shown similar relationships for each of the investigated axial cutting depths. The worst cutting conditions  have been observed when the natural vibration frequency coincided with the tooth frequency or its harmonics. It is shown that the main cause of vibrations in high-speed milling  is forced rather than regenerative vibrations. Increasing the axial depth of cut at the same spindle speed increases the vibration amplitude. However, this does not significantly affect the roughness of the processed surface in cases when it comes to vibration-resistant processing.


Author(s):  
Raphael Galdino dos Santos ◽  
Reginaldo Teixeira Coelho

The chatter phenomenon can severely limit the power available for milling. The stability lobe diagram (SLD) is a very fast and simple method to predict the chatter free zone, allowing the selection of the most adequate spindle speed and depth of cut for higher productivity. However, the data used to calculate the SLD, coming from frequency response functions (FRFs), must be acquired adequately to improve the predictability. FRFs result differently depending on the activation of the spindle electronic control. The present work uses SLDs to investigate these differences and experimental end milling tests to assess the accuracy of SLDs curves. Results indicate that the inclusion of spindle electronic control provides better accuracy in predicting the chatter in milling.


2010 ◽  
Vol 16 (7-8) ◽  
pp. 1151-1168 ◽  
Author(s):  
Xinhua Long ◽  
B. Balachandran

In this article, a stability treatment is presented for up-milling and down-milling processes with a variable spindle speed (VSS). This speed variation is introduced by superimposing a sinusoidal modulation on a nominal spindle speed. The VSS milling dynamics is described by a set of delay differential equations with time varying periodic coefficients and a time delay. A semi-discretization scheme is used to discretize the system over one period, and the infinite-dimensional transition matrix is reduced to a finite-dimensional matrix over this period. The eigenvalues of this finite-dimensional matrix provide information on VSS milling stability with respect to control parameters, such as the axial depth of cut and the nominal spindle speed. The stability charts obtained for VSS milling operations are compared with those obtained for constant spindle speed milling operations, and the benefits of VSS milling operations are discussed.


Author(s):  
X.-H. Long ◽  
B. Balachandran

In this effort, a stability treatment is presented for a milling process with a variable spindle speed (VSS). This variation is caused by superimposing a sinusoidal modulation on a nominal spindle speed. The dynamics of the VSS milling process is described by a set of delay differential equations (DDEs) with time varying periodic coefficients and a time delay. A semi-discretization scheme is used to discretize the system over one period, and the infinite dimensional transition matrix is converted to a finite dimensional matrix over this period. The eigenvalues of this finite dimensional matrix are used to determine the stability of the VSS milling operation with respect to selected control parameters, such as the axis depth of cut and the nominal spindle speed. The benefits of VSS milling operations are discussed by comparing the stability charts obtained for VSS milling operations with those obtained for constant spindle speed (CSS) milling operations.


1990 ◽  
Vol 112 (2) ◽  
pp. 142-149 ◽  
Author(s):  
S. Smith ◽  
J. Tlusty

As spindle speeds and power have increased, the possibility of using the stability lobe phenomena to substantially increase the metal removal rate has become more attractive, and selection of optimum spindle speeds has become an important consideration. It is shown that, for many milling operations, it is desirable to set the tooth frequency equal to the natural frequency. At this spindle speed, the development of resonant forced vibration is actually inhibited by regeneration of waviness. An algorithm is presented for automatically selecting the optimum spindle speed based on the cutting force signal.


2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdolreza Bayesteh ◽  
Junghyuk Ko ◽  
Martin Byung-Guk Jun

There is an increasing demand for product miniaturization and parts with features as low as few microns. Micromilling is one of the promising methods to fabricate miniature parts in a wide range of sectors including biomedical, electronic, and aerospace. Due to the large edge radius relative to uncut chip thickness, plowing is a dominant cutting mechanism in micromilling for low feed rates and has adverse effects on the surface quality, and thus, for a given tool path, it is important to be able to predict the amount of plowing. This paper presents a new method to calculate plowing volume for a given tool path in micromilling. For an incremental feed rate movement of a micro end mill along a given tool path, the uncut chip thickness at a given feed rate is determined, and based on the minimum chip thickness value compared to the uncut chip thickness, the areas of plowing and shearing are calculated. The workpiece is represented by a dual-Dexel model, and the simulation properties are initialized with real cutting parameters. During real-time simulation, the plowed volume is calculated using the algorithm developed. The simulated chip area results are qualitatively compared with measured resultant forces for verification of the model and using the model, effects of cutting conditions such as feed rate, edge radius, and radial depth of cut on the amount of shearing and plowing are investigated.


Author(s):  
D. S. Sai Ravi Kiran ◽  
Alavilli Sai Apparao ◽  
Vempala GowriSankar ◽  
Shaik Faheem ◽  
Sheik Abdul Mateen ◽  
...  

This paper investigates the machinability characteristics of end milling operation to yield minimum tool wear with the maximum material removal rate using RSM. Twenty-seven experimental runs based on Box-Behnken Design of Response Surface Methodology (RSM) were performed by varying the parameters of spindle speed, feed and depth of cut in different weight percentage of reinforcements such as Silicon Carbide (SiC-5%, 10%,15%) and Alumina (Al2O3-5%) in alluminium 7075 metal matrix. Grey relational analysis was used to solve the multi-response optimization problem by changing the weightages for different responses as per the process requirements of quality or productivity. Optimal parameter settings obtained were verified through confirmatory experiments. Analysis of variance was performed to obtain the contribution of each parameter on the machinability characteristics. The result shows that spindle speed and weight percentage of SiC are the most significant factors which affect the machinability characteristics of hybrid composites. An appropriate selection of the input parameters such as spindle speed of 1000 rpm, feed of 0.02 mm/rev, depth of cut of 1 mm and 5% of SiC produce best tool wear outcome and a spindle speed of 1838 rpm, feed of 0.04 mm/rev, depth of cut of 1.81 mm and 6.81 % of SiC for material removal rate.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


Sign in / Sign up

Export Citation Format

Share Document