scholarly journals The Influence of Inlet Asymmetry on Steam Turbine Exhaust Hood Flows

Author(s):  
Zoe Burton ◽  
Simon Hogg ◽  
Grant L. Ingram

It has been widely recognized for some decades that it is essential to accurately represent the strong coupling between the last stage blades (LSB) and the diffuser inlet, in order to correctly capture the flow through the exhaust hoods of steam turbine low pressure cylinders. This applies to any form of simulation of the flow, i.e., numerical or experimental. The exhaust hood flow structure is highly three-dimensional and appropriate coupling will enable the important influence of this asymmetry to be transferred to the rotor. This, however, presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching for methods to reduce the computational effort without compromising solution accuracy. However, this can result in excessive computational demands in numerical simulations. Unsteady full-annulus CFD calculation will remain infeasible for routine design calculations for the foreseeable future. More computationally efficient methods for coupling the unsteady rotor flow to the hood flow are required that bring computational expense within realizable limits while still maintaining sufficient accuracy for meaningful design calculations. Research activity in this area is focused on developing new methods and techniques to improve accuracy and reduce computational expense. A novel approach for coupling the turbine last stage to the exhaust hood employing the nonlinear harmonic (NLH) method is presented in this paper. The generic, IP free, exhaust hood and last stage blade geometries from Burton et al. (2012. “A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research,”Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-68485) that are representative of modern designs, are used to demonstrate the effectiveness of the method. This is achieved by comparing results obtained with the NLH to those obtained with a more conventional mixing-plane approach. The results show that the circumferential asymmetry can be successfully transferred in both directions between the exhaust hood flow and that through the LSB, by using the NLH. This paper also suggests that for exhaust hoods of generous axial length, little change in Cp is observed when the circumferential asymmetry is captured. However, the predicted flow structure is significantly different, which will influence the design and placement of the exhaust hood internal “furniture.”

Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Author(s):  
Zoe Burton ◽  
Grant Ingram ◽  
Simon Hogg

The exhaust hood of a steam turbine is a vital area of turbomachinery research its performance strongly influences the power output of the last stage blades. It is well known that accurate CFD simulations are only achieved when the last stage blades are coupled to the exhaust hood to capture the strong interaction. This however presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching of methods to reduce the computational effort without compromising solution accuracy. This work uses a novel approach, by coupling the last stage blades and exhaust hood by the Non-Linear Harmonic Method, a technique widely used to reduce calculation size in high pressure turbine blades and axial compressors. This has been benchmarked against the widely adopted Mixing Plane method. The test case used is the Generic Geometry, a representative exhaust hood and last stage blade geometry that is free from confidentiality and IP restrictions and for which first calculations were presented at last year’s conference [1]. The results show that the non-uniform exhaust hood inlet flow can be captured using the non-liner harmonic method, an effect not previously achievable with single passage coupled calculations such as the mixing plane approach. This offers a significant computational saving, estimated to be a quarter of the computation time compared with alternative methods of capturing the asymmetry with full annulus frozen rotor calculations.


Author(s):  
Michal Hoznedl ◽  
Antonín Živný ◽  
Aleš Macálka ◽  
Robert Kalista ◽  
Kamil Sedlák ◽  
...  

The paper presents the results of measurements of flow parameters behind the last stage of a 1090 MW nominal power steam turbine in a nuclear power plant. The results were obtained by traversing a pneumatic probe at a distance of about 100 mm from the trailing edges of the LSB (Last Stage Blade). Furthermore, both side walls as well as the front wall of one flow of the LP (Low Pressure) exhaust hood were fitted with a dense net of static pressure taps at the level of the flange of the turbine. A total of 26 static pressures were measured on the wall at the output from the LP exhaust hood. Another 14 pressures were measured at the output from the condenser neck. The distribution of static pressures in both cross sections for full power and 600 and 800 MW power is shown. Another experiment was measured pressure and angle distribution using a ball pneumatic probe in the condenser neck area in a total of four holes at a distance up to 5 metres from the neck wall. The turbine condenser is two-flow design. In one direction perpendicular to the axis of the turbine cold cooling water comes, it heats partially. It then reverses and it heats to the maximum temperature again. The different temperature of cooling water in the different parts of the output cross section should influence the distribution of the output static pressure. Differences in pressures may cause problems with uneven load of the tube bundles of the condenser as well as problems with defining the influential edge output condition in CFD simulations of the flow of the cold end of the steam turbine Due to these reasons an extensive 3D CFD computation, which includes one stator blade as well as all moving blades of the last stage, a complete diffuser, the exhaust hood and the condenser neck, has been carried out. Geometry includes all reinforcing elements, pipes and heaters which could influence the flow behaviour in the exhaust hood and its pressure loss. Inlet boundary conditions were assumed for the case of both computations from the measurement of the flow field behind the penultimate stage. The outlet boundary condition was defined in the first case by an uneven value of the static pressure determined by the change of the temperature of cooling water. In the second case the boundary condition in accordance with the measurement was defined by a constant value of the static pressure along all the cross section of the output from the condenser neck. Results of both CFD computations are compared with experimental measurement by the distribution of pressures and other parameters behind the last stage.


Author(s):  
Tadashi Tanuma ◽  
Yasuhiro Sasao ◽  
Satoru Yamamoto ◽  
Shinji Takada ◽  
Yoshiki Niizeki ◽  
...  

Low pressure (LP) exhaust hoods are an important component of steam turbines. The aerodynamic loss of LP exhaust hoods is almost the same as those of the stator and rotor blading in LP steam turbines. Designing high performance LP exhaust hoods should lead further enhancement of steam turbine efficiency. This paper presents the results of exhaust hood computational fluid dynamics (CFD) analyses using last stage exit velocity distributions measured in a full-scale development steam turbine as the inlet boundary condition to improve the accuracy of the CFD analysis. One of the main difficulties in predicting the aerodynamic performance of the exhaust hoods is the unsteady boundary layer separation of exhaust hood diffusers. A highly accurate unsteady numerical analysis is introduced in order to simulate the diffuser flows in LP exhaust hoods. Compressible Navier-Stokes equations and mathematical models for nonequilibrium condensation are solved using the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe’s approximate Riemann solver, and the LU-SGS scheme. The SST turbulence model is also solved for evaluating the eddy viscosity. The computational results were validated using the measurement data, and the present CFD method was proven to be suitable as a useful tool for determining optimum three-dimensional designs of LP turbine exhaust diffusers.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Jing Zhang ◽  
Fan Wu ◽  
Chun Wang ◽  
Ziyue Mei ◽  
An Han ◽  
...  

Flow separation and different kinds of stall flows occur under low load conditions for steam turbine last stage blades. In order to delay the flow separation and increase turbine power production, we applied suction side tubercles on steam turbine low-pressure last stage blades in the present study. The amplitude, wavelength, position, and thickness were considered as our design variables. We used the orthogonal test method (OTM) to generate modified blades with different tubercle variables that were then numerically simulated by a three-dimensional computational fluid dynamics (CFD) analysis. The blade axial torque of the nine modified tests was compared with the original blade. The results showed that the application of bionic tubercles on the suction side of the steam turbine blade is a promising solution to improve the blade axial torque for all modified tests with a maximum increase of 33.32% due to the turbulent vortices generated by bionic tubercles.


Author(s):  
Sungho Yoon ◽  
Felix Joe Stanislaus ◽  
Thomas Mokulys ◽  
Gurnam Singh ◽  
Martin Claridge

The performance of the last stage of a Low Pressure (LP) steam turbine is strongly coupled with the downstream exhaust hood performance. In particular, the effect of the diffuser within the exhaust hood on the pressure recovery is very important in retrofitting existing machines, which dictate many geometric constraints. Alstom’s in-house Exhaust Design System (EDS) simulates the three-dimensional flow in the exhaust hood by coupling the last stage blades and the exhaust hood. This EDS system can be used to design an LP diffuser in the exhaust hood and to achieve the required performance targets. In the first part of this paper, the EDS system is validated against measurements within model turbines, which represent both a standard machine as well as a retrofit machine. In the second part of this paper, an LP diffuser was redesigned to improve the performance using the EDS method. To begin with, an axi-symmetric diffuser was designed using numerical simulations of a passage in the last stage turbine as well as a slice of the diffuser and the exhaust hood. By carefully controlling the profile of the diffuser casing, the flow separation at the original casing walls was reduced significantly and this, in turn, improved the performance of the turbine substantially. Then, the full geometry of the exhaust hood was modeled in order to investigate the effect of the three-dimensional flow features. Based on the examined flow features, an asymmetric change was introduced to the diffuser casing to improve the three-dimensional flow structure. This new asymmetric diffuser was found to maximize the exhaust performance.


Author(s):  
Can Ma ◽  
Jun Wu ◽  
Yuansheng Lin

In the nuclear power plant, the last stage of the low pressure steam turbine is characterized by long blades. These long blades operate under severe working conditions with wet steam flow and strong mechanical stress. At the start up and shut down operating condition where the volume flow is extremely low, the last stage blades operate in ventilation conditions where there is significant reverse flow in the exhaust and the last stage. In such a condition, the reverse flow would cause significant increase in the blade temperature. In addition, the rotating reverse flow would increase the vibration of the rotor blade. Such temperature increase and enhanced vibration can cause blade damage and force the machine to be shut down. In previous work, the steam injection in the last stage has been proposed as a promising method to decrease the reverse flow at low volume flow conditions, which reduces the stall cell size in the last stage blade. This work investigates the effect of the steam injection process on the blade temperature distribution by conducting three-dimensional flow simulations. Various steam injection configurations are compared in this work and the major consideration to be noted in the design process is discussed.


Author(s):  
Zoe Burton ◽  
Grant L. Ingram ◽  
Simon Hogg

This paper summarizes the findings from research studies carried out over the last 30 years, to better understand the flows in steam turbine low pressure exhaust hoods and diffusers. The work aims to highlight the areas where further study is still required. A detailed description of the flow structure is outlined and the influence of the last turbine stage and the hood geometry on loss coefficient is explored. At present, the key challenge faced is numerically modeling the three-dimensional, unsteady, transonic, wet steam exhaust hood flow given the impractically high computational power requirement. Multiple calculation simplifications to reduce the computational demand have been successfully verified with experimental data, but at present there is no ‘best-practice’ approach to reduce the computational time for routine design exercises. This paper highlights the importance of coupling the exhaust hood to the last stage steam turbine blades to capture the interaction; ensuring the total pressure and swirl angle profiles, along with the tip leakage jet are accurately applied to the diffuser inlet. The nonaxial symmetry of the exhaust hood means it is also important to model the full blade annulus. More studies have emerged modeling the wet steam and unsteady flow effects, but more work is required in this area to fully understand the impact on the flow structure.


2017 ◽  
Author(s):  
Robert Kalista ◽  
Lukáš Mrózek ◽  
Michal Hoznedl

As is well known, the performance of the last stage of the low pressure part of a steam turbine is strongly influenced by the effectivity of the downstream exhaust casing. The efficiency of the exhaust hood depends on many structural factors such as the design of the diffuser parts, dimensions of the outer casing or arrangement of internal supports. The aim of this paper is the experimental study of the influence of the internal supports of the axial-radial exhaust hood on its pressure recovery factor. For one geometry of its diffuser parts a few different variations of internal supports such as T-rib, tube grid or BV were tested. The effect of reducing the width of exhaust hood in the horizontal joint and the changing of axial length of the diffuser were observed. The width of exhaust hood in horizontal joint and the axial length of the diffuser define the area in the horizontal joint of the exhaust hood. How the diffuser behaves when reducing this area is very important in retrofitting of old machines, where there are so many geometric constrains. The effect of wall jet blowing into the diffuser wall was also evaluated. In this paper we concentrate to examine the sensitivity of these certain geometrical parameters of exhaust hood on the pressure recovery of the whole exhaust system of the low pressure part of the steam turbine. The main purpose of our analysis and experimental measuring was optimising the axial-radial exhaust hood of the steam turbine. For this reason, wind tunnel facilities with relevant measuring and traversing systems were designed and built. The measurements have been performed on 1/5th scale test rig which enabled rapid and efficient evaluation of multiple geometrical variants. The observed exhaust hood was designed for an extra long 54inch last stage blade. For measurements of flow parameters was used multi-hole pneumatic pressure probes and wall pressure taps in conjunction with CFD tools to explore physics based alterations to the exhaust configuration.


Sign in / Sign up

Export Citation Format

Share Document