An Analytical Approach to Investigate the Evolution of Bone Volume Fraction in Bone Remodeling Simulation at the Tissue and Cell Level

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Michele Colloca ◽  
Keita Ito ◽  
Bert van Rietbergen

Simulation of bone remodeling at the bone cell level can predict changes in bone microarchitecture and density due to bone diseases and drug treatment. Their clinical application, however, is limited since bone microarchitecture can only be measured in the peripheral skeleton of patients and since the simulations are very time consuming. To overcome these issues, we have developed an analytical model to predict bone density adaptation at the organ level, in agreement with our earlier developed bone remodeling theory at the cellular level. Assuming a generalized geometrical model at the microlevel, the original theory was reformulated into an analytical equation that describes the evolution of bone density as a function of parameters that describe cell activity, mechanotransduction and mechanical loading. It was found that this analytical model can predict changes in bone density due to changes in these cell-level parameters that are in good agreement with those predicted by the earlier numerical model that implemented a detailed micro-finite element (FE) model to represent the bone architecture and loading, at only a fraction of the computational costs. The good agreement between analytical and numerical density evolutions indicates that the analytical model presented in this study can predict well bone functional adaptation and, eventually, provide an efficient tool for simulating patient-specific bone remodeling and for better prognosis of bone fracture risk.

2021 ◽  
Author(s):  
Imane Ait Oumghar ◽  
Abdelwahed Barkaoui ◽  
Patrick Chabrand

Bone density and bone microarchitecture are two principle parameters needed for the evaluation of mechanical bone performance and consequently the detection of bone diseases. The mechanobiological behavior of the skeletal tissue has been described through several mathematical models. Generally, these models fingerboard different length scale processes, such as the mechanical, the biological, and the chemical ones. By means of the mechanical stimulus and the biological factors involved in tissue regeneration, bone cells’ behavior and bone volume changes are determined. The emergence of bone diseases leads to disrupt the bone remodeling process and thus, induces bone mechanical properties’ alteration. In the present chapter, an overview of bone diseases and their relationship with bone density alteration will be presented. Besides, several studies treating bone diseases’ effect on bone remodeling will be discussed. Finally, the mechanobiological models proposed to treat bone healing and drugs’ effect on bone, are going to be reviewed. For this sake, the chapter is subdivided into three main sequences: (i) Bone remodeling, (ii) Bone deterioration causes, (iii) Mathematical models of a pathological bone, and (iv) Mechanobiological models treating bone healing and drugs effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehran Ashrafi ◽  
Farzan Ghalichi ◽  
Behnam Mirzakouchaki ◽  
Manuel Doblare

AbstractBone remodeling identifies the process of permanent bone change with new bone formation and old bone resorption. Understanding this process is essential in many applications, such as optimizing the treatment of diseases like osteoporosis, maintaining bone density in long-term periods of disuse, or assessing the long-term evolution of the bone surrounding prostheses after implantation. A particular case of study is the bone remodeling process after dental implantation. Despite the overall success of this type of implants, the increasing life expectancy in developed countries has boosted the demand for dental implants in patients with osteoporosis. Although several studies demonstrate a high success rate of dental implants in osteoporotic patients, it is also known that the healing time and the failure rate increase, necessitating the adoption of pharmacological measures to improve bone quality in those patients. However, the general efficacy of these antiresorptive drugs for osteoporotic patients is still controversial, requiring more experimental and clinical studies. In this work, we investigate the effect of different doses of several drugs, used nowadays in osteoporotic patients, on the evolution of bone density after dental implantation. With this aim, we use a pharmacokinetic–pharmacodynamic (PK/PD) mathematical model that includes the effect of antiresorptive drugs on the RANK/RANK-L/OPG pathway, as well as the mechano-chemical coupling with external mechanical loads. This mechano-PK/PD model is then used to analyze the evolution of bone in normal and osteoporotic mandibles after dental implantation with different drug dosages. We show that using antiresorptive agents such as bisphosphonates or denosumab increases bone density and the associated mechanical properties, but at the same time, it also increases bone brittleness. We conclude that, despite the many limitations of these very complex models, the one presented here is capable of predicting qualitatively the evolution of some of the main biological and chemical variables associated with the process of bone remodeling in patients receiving drugs for osteoporosis, so it could be used to optimize dental implant design and coating for osteoporotic patients, as well as the drug dosage protocol for patient-specific treatments.


2018 ◽  
Vol 69 (7) ◽  
pp. 1706-1709
Author(s):  
Nicoleta Dumitru ◽  
Andra Cocolos ◽  
Andra Caragheorgheopol ◽  
Constantin Dumitrache ◽  
Ovidiu Gabriel Bratu ◽  
...  

There is an increased interest and more studies highlight the fact that bone strength depends not only on bone tissue quantity, but also on its quality, which is characterized by the geometry and shape of bones, trabecular bone microarchitecture, mineral content, organic matrix and bone turnover. Fibrillar type I collagen is the major organic component of bone matrix, providing form and a stable template for mineralization. The biomedical importance of collagen as a biomaterial for medical and cosmetic purposes and the improvement of the molecular, cellular biology and analytical technologies, led to increasing interest in establishing the structure of this protein and in setting of the relationships between sequence, structure, and function. Bone collagen crosslinking chemistry and its molecular packing structure are considered to be distinct features. This unique post-translational modifications provide to the fibrillar collagen matrices properties such as tensile strength and viscoelasticity. Understanding the complex structure of bone type I collagen as well as the dynamic nature of bone tissues will help to manage new therapeutic approaches to bone diseases.


Author(s):  
Guobiao Ji ◽  
Liang Cheng ◽  
Shaohua Fei ◽  
Jiangxiong Li ◽  
Yinglin Ke

Through-thickness reinforcement is a promising solution to the problem of delamination susceptibility in laminated composites. Modeling Z-pin–prepreg interaction is essential for accurate robotics-assisted Z-pin insertion. In this paper, a novel Z-pin insertion force model combining the classical cohesive finite element (FE) method with a dynamic analytical fracture mechanics model is proposed. The velocity-dependent cohesive elements, in which the fracture toughness is provided by the analytical model, are implemented in Z-pin insertion FE model to predict the crack initiation and propagation. Then Z-pin insertion experiments are performed on prepreg sample with metallic Z-pins at different velocities to identify the analytical model parameters and validate the simulation predictions offered by the model. Dynamics of Z-pin interaction with inhomogeneous prepreg is described and the effects of insertion velocity on prepreg contact force are studied. Results show that the force model agrees well with experiments and the fracture toughness rises with the increasing Z-pin insertion velocity.


2014 ◽  
Vol 622-623 ◽  
pp. 659-663 ◽  
Author(s):  
Fabio Bassan ◽  
Paolo Ferro ◽  
Franco Bonollo

In this work, the formation mechanisms of surface defects in multistage cold forging of axisymmetrical parts have been studied through FEM simulations. As case history, the industrial production of an heating pipe fitting by cold forging has been analyzed. Based on simulated flow behaviour of material, several types of surface defects are identified and attributed to plastic instability of the work-material, inappropriate axial/radial flow ratio, excessive forming-pressure and uncorrect tooling design. The results of the FE model are finally compared with those obtained from real forging process and good agreement is observed.


2013 ◽  
Vol 416-417 ◽  
pp. 492-502 ◽  
Author(s):  
T.T. Overboom ◽  
J.P.C. Smeets ◽  
J.W. Jansen ◽  
E.A. Lomonova

This paper presents the design and control of a magnetically suspended ceiling actuator which combines four iron-cored linear actuators and a checkerboard permanent magnet array for an infinite planar stroke. When the actuators are rotated with respect to the PM array, it is shown that the thrust and normal force produced by the three-phase linear actuators can be controlled by applying Park's transformation. The design of the iron-cored linear actuators is optimized for minimum losses when the translator inside the ceiling actuator and a payload are accelerated in the xy-plane. The optimization is performed using an analytical model is. Simulations of the optimized design with a 3D FE-model, show a maximum tracking error of 1 μm and rotations of 30 μrad when the translator is moved and controlled in 6 DOF.


2013 ◽  
Vol 281 ◽  
pp. 112-115 ◽  
Author(s):  
Dan Jin ◽  
Zhao Hui Li

Wedge-shaped transducers have been widely used in industry as probes for ultrasonic flowmeters or for ultrasonic flaw detectors. But by now, few studies have focused on the influence to the performance of the wedge-shaped transducers brought by their limited size. In this paper, the effect of the shape and size of wedge-shaped substrates on the whole transducer system is discussed and the shape and size of a transducer (0.5MHz) is optimized to eliminate the influence of the boundary effect by using a 2-D Finite Element (FE) model. Lastly, wedge-shaped transducers have been manufactured for experiment which shows a good agreement with the simulation.


Sign in / Sign up

Export Citation Format

Share Document