Thermal Analysis and Experimental Validation of Laminar Heat Transfer and Pressure Drop in Serpentine Channel Heat Sinks for Electronic Cooling

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Xiaohong Hao ◽  
Bei Peng ◽  
Gongnan Xie ◽  
Yi Chen

In this paper, a thermal resistance network analytical model is proposed to investigate the thermal resistance and pressure drop in serpentine channel heat sinks with 180 deg bends. The total thermal resistance is obtained using a thermal resistance network model based on the equivalent thermal circuit method. Pressure drop is derived considering straight channel and bend loss because the bends interrupt the hydrodynamic boundary periodically. Considering the effects of laminar flow development and redevelopment, the bend loss coefficient is obtained as a function of the Reynolds number, aspect ratios, widths of fins, and turn clearances, through a three-regime correlation. The model is then experimentally validated by measuring the temperature and pressure characteristics of heat sinks with different Reynolds numbers and different geometric parameters. Finally, the temperature-rise and pressure distribution of the thermal fluid with Reynolds numbers of 500, 1000, and 1500 are examined utilizing this model.

Author(s):  
Jingru Zhang ◽  
Po Ting Lin ◽  
Yogesh Jaluria

In this paper, two different configurations of multiple microchannel heat sinks with fluid flow are investigated for electronic cooling: straight and U-shaped channel designs. Numerical models are utilized to study the multiphysics behavior in the microchannels and validated by comparisons with experimental results. Three responses, including thermal resistance, pressure drop, and maximum temperature, are parametrically modeled with respect to various variables such as dimensions of the channels, total number of channels, and flow rate. Multi-objective optimization problems, which minimize the thermal resistance and the pressure drop simultaneously, are formulated and studied. Physical constraints in terms of channel height, maximum temperature, and pressure are further investigated. The Pareto frontiers are studied and the trade-off behavior between the thermal resistance and the pressure drop are discussed.


2016 ◽  
Vol 20 (6) ◽  
pp. 2001-2013 ◽  
Author(s):  
Shanglong Xu ◽  
Yihao Wu ◽  
Qiyu Cai ◽  
Lili Yang ◽  
Yue Li

The objective is to optimize the configuration sizes and thermal performance of a multilayer silicon microchannel heat sink by the thermal resistance network model. The effect of structural parameter on the thermal resistance is analyzed by numercal simulation. Taking the thermal resistance as an objective function, a nonlinear and multi-constrained optimization model are proposed for the silicon microchannel heat sink in electronic chips cooling. The sequential quadratic programming (SQP) method is used to do the optimization design of the configuration sizes of the microchannel. For the heat sink with the size of 20mm?20mm and the power of 400 W, the optimized microchannel number, layer, height and width are 40 and 2, 2.2mm and 0.2mm, respectively, and its corresponding total thermal resistance for whole microchannel heat sink is 0.0424 K/W.


Author(s):  
Sidy Ndao ◽  
Yoav Peles ◽  
Michael K. Jensen

A genetic algorithm based multi-objective thermal design optimization of liquid cooled offset strip fin heat sinks is presented. Using water and HFE-7000 as coolants, Matlab’s genetic algorithm and direct search toolbox functions were utilized to determine the optimal thermal design of the offset strip fin heat sink based on the total thermal resistance and power consumption under constant pressure drop. For a relatively small fin length, the total thermal resistance decreases with increasing fin length and aspect ratio α. For larger fin lengths, the total thermal resistance increases with increasing fin length whereas the power consumption continuously increases with increasing fin length and aspect ratio α for a given pressure drop. A plot of the Pareto front indicates a trade-off between the total thermal resistance and pumping power consumption.


Author(s):  
Anas Alkhazaleh ◽  
Mohamed Younes El-Saghir Selim ◽  
Fadi Alnaimat ◽  
Bobby Mathew

Abstract This article discusses the mathematical modeling of a straight microchannel heat sink, embedded with pin-fins, for purposes of liquid cooling of microelectronic chips. The influence of three different geometrical parameters, pin fins’ diameter, pitch, and hydraulic diameter, on the heat sinks performance is studied. The studies are performed for Reynolds numbers varying from 250 to 2000, and the results are quantified based on thermal resistance and pressure drop. The heat sinks embedded with pin fins have better performance in terms of thermal resistance but at the same time have higher pressure drop. Studies revealed that increasing the pin fins’ diameter, pitch, and hydraulic diameter have an influence on the thermal resistance; the thermal resistance is found to be decreasing with increasing these parameters for the same Reynolds number. For the cases studied, the reduction in thermal resistance of straight microchannels embedded with pin fins varied from 18% to 60% compared with that of traditional straight microchannels for different heat sinks configurations and Reynolds number. On the other hand, the pressure drop is increasing with an increase in pin fins’ diameter and pitch, while it is found to be decreasing with increasing the hydraulic diameter.


Author(s):  
Anas Alkhazaleh ◽  
Mohamed Younes El-Saghir Selim ◽  
Fadi Alnaimat ◽  
Bobby Mathew

Abstract In this work, an investigation of the heat sink performance employing sinusoidal microchannels embedded with pin fins was conducted. The effect of the sine wave frequency, the pin fins’ diameter, and the hydraulic diameter of the microchannel are studied. The results are quantified in terms of thermal resistance and pressure drop. The study was done using Reynolds numbers varying from 250 to 2000. As Reynolds number increases, the heat sink’s thermal resistance decreased while the pressure drop increased accordingly for all scenarios. The sinusoidal microchannels showed better performance — lower thermal resistance — but with the cost of higher pressure drop compared to the straight microchannel heat sink. The heat sink’s performance was improved by increasing the frequency, diameter of pin fins, and hydraulic diameter; however, this reduction in thermal resistance was associated with an increase in pressure drop. The reduction in thermal resistance of the different configurations of the sinusoidal microchannels was between 17% and 69% compared to the straight microchannel heat sink.


2019 ◽  
Vol 71 (6) ◽  
pp. 733-740 ◽  
Author(s):  
Biao Ma ◽  
Liang Yu ◽  
Man Chen ◽  
He Yan Li ◽  
Liang Jie Zheng

PurposeThis paper aims to investigate the thermal characteristics of the clutch hydraulic system under various oil flow conditions. Increasing the oil flow is one of the most important approaches to reduce the clutch temperature. However, the effect of the oil flow on the clutch temperature remains to be explored.Design/methodology/approachThe thermal resistance network model and the lumped parameter method are used to study the thermal characteristics of the clutch hydraulic system. The predicted temperature variations of the clutch and the oil are compared with experimental data.FindingsResults demonstrate that the larger the friction power is, the higher the temperatures of the clutch and the oil are. However, the temperature growth rates of the clutch and oil present different trends: the former decreases gradually and the latter increases constantly. Additionally, increasing the oil flow within a certain range gives rise to the decrease of clutch temperature and the increase of oil temperature; nevertheless, their variation trends are gradually weakening. When the oil flow is large enough, it brings a slight effect on the clutch temperature rise.Originality/valueThis paper extends the knowledge into the oil flow supply of the clutch hydraulic system. The conclusions can provide a theoretical guidance for the oil management of the transmission system. Additionally, the thermal resistance network model is also effective and efficient for other hydraulic equipment to predict the temperature variation.


2006 ◽  
Vol 129 (2) ◽  
pp. 190-194 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

The performance of impingement air cooled plate fin heat sinks differs significantly from that of parallel flow plate fin heat sinks. A simple impingement flow pressure drop model based on developing laminar flow in rectangular channels is proposed. The model is developed from simple momentum balance and utilizes fundamental solutions from fluid dynamics to predict its constitutive components. To test the validity of the model, experimental measurements of pressure drop are performed with heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The accuracy of the pressure drop model was found to be within 20% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The simple model is suitable for impingement air cooled plate fin heat sinks parametric design studies.


Author(s):  
C. T. Wang ◽  
C. P. Chang ◽  
C. K. Shaw ◽  
J. Y. Cheng

Fuel cells possessing high potency and low pollution are well known and are considered the new generation of power technology. This study presents a novel bionic concept flow slab design to improve fuel cell performance. A series of 2D simulations was executed at Re=10 and 100 for the bionic flow and traditional flow slabs. In addition, the effect of aspect ratio was studied using 3D simulation. Numerical results obtained show that this novel bionic flow slab design will exhibit better performance than traditional flow slabs regardless of Reynolds numbers and aspect ratios because it possesses a more uniform velocity and a lower pressure drop. Finally, the performance in the bionic flow slab’s reaction area was determined to be superior. These findings show that the bionic concept and flow slab design addressed in this paper will be useful in enhancing fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document