Designs of Multiple Microchannel Heat Transfer Systems

Author(s):  
Jingru Zhang ◽  
Po Ting Lin ◽  
Yogesh Jaluria

In this paper, two different configurations of multiple microchannel heat sinks with fluid flow are investigated for electronic cooling: straight and U-shaped channel designs. Numerical models are utilized to study the multiphysics behavior in the microchannels and validated by comparisons with experimental results. Three responses, including thermal resistance, pressure drop, and maximum temperature, are parametrically modeled with respect to various variables such as dimensions of the channels, total number of channels, and flow rate. Multi-objective optimization problems, which minimize the thermal resistance and the pressure drop simultaneously, are formulated and studied. Physical constraints in terms of channel height, maximum temperature, and pressure are further investigated. The Pareto frontiers are studied and the trade-off behavior between the thermal resistance and the pressure drop are discussed.

Author(s):  
Jingru Zhang ◽  
Po Ting Lin ◽  
Yogesh Jaluria

In this paper, two different configurations of multiple microchannel heat sinks, with fluid flow, are investigated for heat removal: straight and U-shaped channel designs. Numerical models are utilized to study the multiphysics behavior in the microchannels and these are validated by comparisons with experimental results. The main focus of this work is on the design and optimization of these systems and to outline the methodology that may be used for other similar thermal systems. Three responses, including thermal resistance, pressure drop, and maximum temperature, are parametrically modeled with respect to various design variables and operating conditions such as dimensions of the channels, total number of channels, and flow rate. Multi-objective optimization problems, which minimize the thermal resistance and the pressure drop simultaneously, are formulated and studied. Physical constraints in terms of channel height, maximum temperature, and pressure are further investigated. The Pareto frontiers are studied and the trade-off behavior between the thermal resistance and the pressure drop are discussed. Characteristic results are presented and discussed.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Xiaohong Hao ◽  
Bei Peng ◽  
Gongnan Xie ◽  
Yi Chen

In this paper, a thermal resistance network analytical model is proposed to investigate the thermal resistance and pressure drop in serpentine channel heat sinks with 180 deg bends. The total thermal resistance is obtained using a thermal resistance network model based on the equivalent thermal circuit method. Pressure drop is derived considering straight channel and bend loss because the bends interrupt the hydrodynamic boundary periodically. Considering the effects of laminar flow development and redevelopment, the bend loss coefficient is obtained as a function of the Reynolds number, aspect ratios, widths of fins, and turn clearances, through a three-regime correlation. The model is then experimentally validated by measuring the temperature and pressure characteristics of heat sinks with different Reynolds numbers and different geometric parameters. Finally, the temperature-rise and pressure distribution of the thermal fluid with Reynolds numbers of 500, 1000, and 1500 are examined utilizing this model.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 16 ◽  
Author(s):  
Daxiang Deng ◽  
Guang Pi ◽  
Weixun Zhang ◽  
Peng Wang ◽  
Ting Fu

This work numerically studies the thermal and hydraulic performance of double-layered microchannel heat sinks (DL-MCHS) for their application in the cooling of high heat flux microelectronic devices. The superiority of double-layered microchannel heat sinks was assessed by a comparison with a single-layered microchannel heat sink (SL-MCHS) with the same triangular microchannels. Five DL-MCHSs with different cross-sectional shapes—triangular, rectangular, trapezoidal, circular and reentrant Ω-shaped—were explored and compared. The results showed that DL-MCHS decreased wall temperatures and thermal resistance considerably, induced much more uniform wall temperature distribution, and reduced the pressure drop and pumping power in comparison with SL-MCHS. The DL-MCHS with trapezoidal microchannels performed the worst with regard to thermal resistance, pressure drop, and pumping power. The DL-MCHS with rectangular microchannels produced the best overall thermal performance and seemed to be the optimum when thermal performance was the prime concern. Nevertheless, the DL-MCHS with reentrant Ω-shaped microchannels should be selected when pumping power consumption was the most important consideration.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.


2021 ◽  
pp. 81-81
Author(s):  
Zulfiqar Khattak ◽  
Hafiz Ali

Heat dissipation is becoming more and more challenging with the preface of new electronic components having staggering heat generation levels. Present day solutions should have optimized outcomes with reference to the heat sink scenarios. The experimental and theoretical results for plate type heat sink based on mathematical models have been presented in the first part of the paper. Then the parametric optimization (topology optimization) of plate type heat sink using Levenberg-Marquardt technique employed in the COMSOL Multiphysics? software is discussed. Thermal resistance of heat sink is taken as objective function against the variable length in a predefined range. Single as well as multi-parametric optimization of plate type heat sink is reported in the context of pressure drop and air velocity (Reynolds number) inside the tunnel. The results reported are compared with the numerical modeled data and experimental investigation to establish the conformity of results for applied usage. Mutual reimbursements of greater heat dissipation with minimum flow rates are confidently achievable through balanced, heat sink geometry as evident by the presented simulation outcome. About 12% enhancement in pressure drop and up to 51% improvement in thermal resistance is reported for the optimized plate fin heat sink as per data manifested.


2016 ◽  
Vol 15 (2) ◽  
pp. 58
Author(s):  
A. Husain ◽  
N.A. Al-Azri ◽  
A. Samad ◽  
K.Y. Kim

The present study investigates the thermal performance of a multiple micro-jet impingements model for electronics cooling. The fluid flow and heat transport characteristics were investigated for steady incompressible laminar flow by solving three-dimensional (3D) Navier-Stokes equations. Several parallel and staggered micro-jet configurations (ie. inline 2 Å~ 2, 3 Å~ 3 and 4 Å~ 4 jets, and staggered five-jet and 13-jet arrays with the jet diameter to the channel height ratios from 0.25–0.5) were analyzed at various flow rates for the maximum temperature rise, pressure drop, heat-transfer coefficient, thermal resistance, and pumping power characteristics. The parametric investigation was carried out based on the number of jets and the jet diameters at various mass flow rates and jet Reynolds numbers. Temperature uniformity and coefficient of performance were evaluated to find out the trade-off among the various designs investigated in the present study. The maximum temperature rise and the pressure drop decreased with an increase in the number of jets except in the case of staggered five-jet array. A higher temperature uniformity was observed at higher flow rates with a decrease in the coefficient of performance. The performance parameters, such as thermal resistance and pumping power, showed a conflicting nature with respect to design variables (viz. jet diameter to stand-off ratio and interjet spacing or number of jets) at various Reynolds numbers within the laminar regime. 


Author(s):  
D. J. de Kock ◽  
J. A. Visser

In modern electronic components power densities are being increased continuously while the size and weight decrease. The effective dissipating of the heat produced by these components has now become a major design problem. Ordinary heat sinks often used to dissipate this heat, can in many instances no longer be used. Heat sinks therefore need to be designed and optimized for specific applications. The design of these heat sinks requires a difficult trade-off between conflicting parameters, e.g. mass or material cost, maximum temperature and pressure drop. Since these parameters influence one another, optimum designs require the use of mathematical optimization techniques. In the case of heat sinks, the thermal engineer would typically like to optimize the design simultaneously for three design parameters. The parameters are maximum heat sink temperature, mass and pressure drop. In the formulation of such an optimization problem, where more than one design criterion is important, the engineer currently has to assign the relative importance of each design criteria before starting the optimization. A better approach is to perform a range of optimization problems where the relative importance of the design criteria is varied systematically to obtain a trade-off surface of optimum heat sinks. This surface can then be used to investigate the influence of the different design criteria on each other and to select the optimum heat sink for a specific application. In this study such a trade-off surface is created for an extruded heat sink exposed to forced convection. The constructing of this surface is obtained by combining a semi-empirical simulation program, QFin 3.0 with the DYNAMIC-Q optimization method.


Author(s):  
Sidy Ndao ◽  
Yoav Peles ◽  
Michael K. Jensen

A genetic algorithm based multi-objective thermal design optimization of liquid cooled offset strip fin heat sinks is presented. Using water and HFE-7000 as coolants, Matlab’s genetic algorithm and direct search toolbox functions were utilized to determine the optimal thermal design of the offset strip fin heat sink based on the total thermal resistance and power consumption under constant pressure drop. For a relatively small fin length, the total thermal resistance decreases with increasing fin length and aspect ratio α. For larger fin lengths, the total thermal resistance increases with increasing fin length whereas the power consumption continuously increases with increasing fin length and aspect ratio α for a given pressure drop. A plot of the Pareto front indicates a trade-off between the total thermal resistance and pumping power consumption.


Author(s):  
M. P. Wang ◽  
T. Y. Wu ◽  
J. T. Horng ◽  
C. Y. Lee ◽  
Y. H. Hung

A series of experimental investigations with a stringent measurement method on the study of the fluid flow behavior for confined compact heat sinks in forced convection have been successfully conducted. In the present study, a theoretical model to effectively predict the velocity and pressure drop for partially-confined heat sinks has been successfully developed. The air velocities flowing into heat sink Us through side bypass U1 and top bypass U2 for various 0.47<H/Hc<1 ratios are evaluated, where H/Hc is the ratio of the heat sink height to channel height. The maximum and average deviations of the velocities predicted by the present model from the experimental data are less than 20.31% and 13.13%, respectively, for confined compact heat sinks. Besides, the results show a good agreement between the predicted results and the experimental data of the pressure drop for the cases of H/Hc = 1. Nevertheless, the relative deviation of the predictions from the experimental data becomes more significant with decreasing H/Hc ratio, i.e., increasing the top bypass of confined compact heat sink. A new modified correlation of pressure drop including the H/Hc effect is presented. The maximum and average deviations of the results predicted by the new correlation from the experimental data are 14.48% and 7.72%, respectively.


Sign in / Sign up

Export Citation Format

Share Document