Droplet Impingement and Vapor Layer Formation on Hot Hydrophobic Surfaces

2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Ji Yong Park ◽  
Andrew Gardner ◽  
William P. King ◽  
David G. Cahill

We use pump–probe thermal transport measurements and high speed imaging to study the residence time and heat transfer of small (360 μm diameter) water droplets that bounce from hydrophobic surfaces whose temperature exceeds the boiling point. The structure of the hydrophobic surface is a 10 nm thick fluorocarbon coating on a Si substrate; the Si substrate is also patterned with micron-scale ridges using photolithography to further increase the contact angle. The residence time determined by high-speed imaging is constant at ≈1 ms over the temperature range of our study, 110 < T < 210 °C. Measurements of the thermal conductance of the interface show that the time of intimate contact between liquid water and the hydrophobic surface is reduced by the rapid formation of a vapor layer and reaches a minimum value of ≈0.025 ms at T > 190 °C. We tentatively associate this time-scale with a ∼1 m s − 1 velocity of the liquid/vapor/solid contact line. The amount of heat transferred during the impact, normalized by the droplet volume, ranges from 0.028 J mm − 3 to 0.048 J mm − 3 in the temperature range 110 < T < 210 °C. This amount of heat transfer is ≈1–2% of the latent heat of evaporation.

Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


2018 ◽  
Vol 89 (16) ◽  
pp. 3401-3410 ◽  
Author(s):  
Hong Liu ◽  
R Hugh Gong ◽  
Pinghua Xu ◽  
Xuemei Ding ◽  
Xiongying Wu

Textile motion in a front-loading washer has been characterized via video capturing, and a processing system developed based on image geometric moment. Textile motion significantly contributes to the mass transfer of the wash solution in porous materials, particularly in the radial direction (perpendicular to the rotational axis of the inner drum). In this paper, the velocity profiles and residence time distributions of tracer textiles have been investigated to characterize the textile dynamics in a front-loading washer. The results show that the textile motion varies significantly with the water volume and rotational speed, and that the motion path follows certain patterns. Two regions are observed in the velocity plots: a passive region where the textile moves up with low velocity and an active region where the textile falls down with relatively high speed. A stagnant area in the residence time profile is observed. This corresponds to the passive region in the velocity profile. The stagnant area affects the mechanical action, thus influencing washing efficiency and textile performance. The findings on textile dynamics will help in the development of better front-loading washers.


2003 ◽  
Author(s):  
Adrian M. Holland ◽  
Colin P. Garner

This paper discusses the production and use of laser-machined surfaces that provide enhanced nucleate boiling and heat transfer characteristics. The surface features of heated plates are known to have a significant effect on nucleate boiling heat transfer and bubble growth dynamics. Nucleate boiling starts from discrete bubbles that form on surface imperfections, such as cavities or scratches. The gas or vapours trapped in these imperfections serve as nuclei for the bubbles. After inception, the bubbles grow to a certain size and depart from the surface. In this work, special heated surfaces were manufactured by laser machining cavities into polished aluminium plates. This was accomplished with a Nd:YAG laser system, which allowed drilling of cavities of a known diameter. The size range of cavities was 20 to 250 micrometers. The resulting nucleate pool boiling was analysed using a novel high-speed imaging system comprising an infrared laser and high resolution CCD camera. This system was operated up to a 2 kHz frame rate and digital image processing allowed bubbles to be analysed statistically in terms of departure diameter, departure frequency, growth rate, shape and velocity. Data was obtained for heat fluxes up to 60 kW.m−2. Bubble measurements were obtained working with water at atmospheric pressure. The surface cavity diameters were selected to control the temperature at which vapour bubbles started to grow on the surface. The selected size and spacing of the cavities was also explored to provide optimal heat transfer.


Author(s):  
Rajneesh Bhardwaj ◽  
Jon P. Longtin ◽  
Daniel Attinger

The objective of this work is to understand the coupling of fluid dynamics and heat transfer during the impact of a millimeter-size water droplet on a flat, solid glass substrate. In this work, a finite-element model is presented which simulates the transient fluid dynamics and heat transfer during the droplet deposition process, considering Laplace forces on the liquid-gas boundary, and the dynamics of wetting. A novel, experimental laser-based method is used to measure temperatures at the solid-liquid interface. This method is based on a thermoreflectance technique and provides unprecedented temporal and spatial resolutions of 1 microsecond and 20 micrometer, respectively. Matching between simulations, temperature measurements and high-speed visualization allows the determination of the interfacial heat transfer coefficient.


2012 ◽  
Vol 704 ◽  
pp. 1-4 ◽  
Author(s):  
John R. de Bruyn

AbstractA flowing granular material can behave like a collection of individual interacting grains or like a continuum fluid, depending in large part on the energy imparted to the grains. As yet, however, we have no general understanding of how or under what conditions the fluid limit is reached. Marston, Li & Thoroddsen (J. Fluid Mech., this issue, vol. 704, 2012, pp. 5–36) use high-speed imaging to investigate the ejection of grains from a granular bed due to the impact of a spherical projectile. Their high temporal resolution allows them to study the very fast processes that take place immediately following the impact. They demonstrate that for very fine grains and high impact energies, the dynamics of the ejecta is both qualitatively and quantitatively similar to what is seen in analogous experiments with fluid targets.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2730
Author(s):  
Vladimir Serdyukov ◽  
Nikolay Miskiv ◽  
Anton Surtaev

This paper demonstrates the advantages and prospects of transparent design of the heating surface for the simultaneous study of the hydrodynamic and thermal characteristics of spray cooling. It was shown that the high-speed recording from the reverse side of such heater allows to identify individual droplets before their impact on the forming liquid film, which makes it possible to measure their sizes with high spatial resolution. In addition, such format enables one to estimate the number of droplets falling onto the impact surface and to study the features of the interface evolution during the droplets’ impacts. In particular, the experiments showed various possible scenarios for this interaction, such as the formation of small-scale capillary waves during impacts of small droplets, as well as the appearance of “craters” and splashing crowns in the case of large ones. Moreover, the unsteady temperature field during spray cooling in regimes without boiling was investigated using high-speed infrared thermography. Based on the obtained data, the intensity of heat transfer during spray cooling for various liquid flow rates and heat fluxes was analyzed. It was shown that, for the studied regimes, the heat transfer coefficient weakly depends on the heat flux density and is primarily determined by the flow rate. In addition, the comparison of the processes of spray cooling and nucleate boiling was made, and an analogy was shown in the mechanisms that determine their intensity of heat transfer.


Author(s):  
R. Burke ◽  
C. Copeland ◽  
T. Duda ◽  
M. A. Reyes-Belmonte

One dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially a sensitivity study was conducted on a simple lumped capacity thermal model of a turbocharger. A new partition parameter was introduced αA, which divides the internal wetted area of the compressor housing into pre and post compression. The sensitivity of heat fluxes to αA was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency whereas at high speed αA had a similar influence to TIT. However, modelling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three dimensional CFD analysis was undertaken using a number of cases approximating different values of αA. It was seen that when considering a case similar to αA=0, meaning that heat transfer on the compressor side is considered to occur only after the compression process, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the pre-compression heat path. The 3D simulation was used to estimate a realistic value for αA which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of αA was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 208
Author(s):  
Peter Reinke ◽  
Jan Ahlrichs ◽  
Tom Beckmann ◽  
Marcus Schmidt

The volume-of-flow method combined with the Rayleigh–Plesset equation is well established for the computation of cavitation, i.e., the generation and transportation of vapor bubbles inside a liquid flow resulting in cloud, sheet or streamline cavitation. There are, however, limitations, if this method is applied to a restricted flow between two adjacent walls and the bubbles’ size is of the same magnitude as that of the clearance between the walls. This work presents experimental and numerical results of the bubble generation and its transportation in a Couette-type flow under the influence of shear and a strong pressure gradient which are typical for journal bearings or hydraulic seals. Under the impact of variations of the film thickness, the VoF method produces reliable results if bubble diameters are less than half the clearance between the walls. For larger bubbles, the wall contact becomes significant and the bubbles adopt an elliptical shape forced by the shear flow and under the influence of a strong pressure gradient. Moreover, transient changes in the pressure result in transient cavitation, which is captured by high-speed imaging providing material to evaluate transient, three-dimensional computations of a two-phase flow.


2013 ◽  
Vol 21 (04) ◽  
pp. 1350028 ◽  
Author(s):  
SEOL HA KIM ◽  
JUN YOUNG KANG ◽  
HO SEON AHN ◽  
HANG JIN JO ◽  
MOO HWAN KIM

Water droplets, 2 mm in diameter, were allowed to fall freely onto hydrophobic and hydrophilic heated surfaces, and their impacts were imaged using high-speed cameras to investigate the droplet dynamics and heat transfer. As the heating power increased, the water droplets evaporated faster, eventually hovering over the surface due to the formation of a boiling film when the Leidenfrost point (LFP) was reached. The heat transfer from the surface into the droplet was evaluated, and LFP transition phenomena were investigated using time-resolved imaging of both side and bottom views. The hydrophilic surface showed a higher heat transfer rate and a higher LFP than the hydrophobic surface did. Furthermore, the droplet dynamics revealed very different shapes depending on the surface wettability; vigorous bubble nucleation and growth was observable for the hydrophilic surface, but not the hydrophobic surface. The rebound behavior of the droplets was analyzed based on the droplet free energy, including kinetic, potential, and surface energy terms.


Sign in / Sign up

Export Citation Format

Share Document