Thermal Behavior of Multidisk Friction Pairs in Hydroviscous Drive Considering Inertia Item

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Fangwei Xie ◽  
Jianzhong Cui ◽  
Gang Sheng ◽  
Cuntang Wang ◽  
Xianjun Zhang

Considering the influence of the inertia item on temperature distribution of multidisk friction pairs in hydroviscous drive (HVD), transient temperature models are derived with the aim of revealing the effect of engagement pressure, lubricant viscosity, viscosity–temperature correlation, surface roughness and the ratio of inner and outer radius of disks on temperature distribution. The results indicate that unsteady temperature gradient can be avoided by matching the suitable materials for multidisk friction pairs. The average temperature for the case of neglecting the inertia item is lower than that of the case of including the inertia item. It is shown that during the soft-start, the temperature along the radial direction achieves its peak value near the outlet and keeps decreasing along the axial direction; while after the engaging process, the temperature distribution tends to be uniform. It is also shown that the decrease of engagement pressure, surface roughness and the ratio of inner and outer radius of disks can reduce temperature gradient effectively as well as the increase of lubricant viscosity. The average temperature for the case of including the viscosity–temperature correlation is much higher than that for other cases.

Author(s):  
Yoichi Utanohara ◽  
Michio Murase ◽  
Akihiro Masui ◽  
Ryo Inomata ◽  
Yuji Kamiya

The structural integrity of the containment vessel (CV) for a pressurized water reactor (PWR) plant under a loss-of-coolant accident is evaluated by a safety analysis code that uses the average temperature of gas phase in the CV during reactor operation as an initial condition. Since the estimation of the average temperature by measurement is difficult, this paper addressed the numerical simulation for the temperature distribution in the CV of an operating PWR plant. The simulation considered heat generation of the equipment, the ventilation and air conditioning systems (VAC), heat transfer to the structure, and heat release to the CV exterior based on the design values of the PWR plant. The temperature increased with a rise in height within the CV and the flow field transformed from forced convection to natural convection. Compared with the measured temperature data in the actual PWR plant, predicted temperatures in the lower regions agreed well with the measured values. The temperature differences became larger above the fourth floor, and the temperature inside the steam generator (SG) loop chamber on the fourth floor was most strongly underestimated, −16.2  K due to the large temperature gradient around the heat release equipment. Nevertheless, the predicted temperature distribution represented a qualitative tendency, low at the bottom of the CV and increases with a rise in height within the CV. The total volume-averaged temperature was nearly equal to the average gas phase temperature. To improve the predictive performance, parameter studies regarding heat from the equipment and the reconsideration of the numerical model that can be applicable to large temperature gradient around the equipment are needed.


Author(s):  
Yanzhong Wang ◽  
Peng Liu

Conical friction surface is a novel configuration for friction plate in transmission. Numerical FEA models for transient heat transfer and distribution of conically grooved friction plate have been established to investigate the thermal behavior of the conical surface with different configurations. The finite element method is used to obtain the numerical solution, the temperature test data of conical surface are obtained by the friction test rig. In order to study and compare the temperature behavior of conically grooved friction plate, several three-dimensional transient temperature models are established. The heat generated on the friction interface during the continuous sliding process is calculated. Two different pressure conditions were defined to evaluate the influence of different load conditions on temperature rise and the effects of conical configuration parameters on surface temperature distribution are investigated. The results show that the radial temperature gradient on conical friction surface is obvious. The uniform pressure condition could be used when evaluating the temperature rise of conically grooved friction plate. The increase of the cone height could improve the radial temperature gradient of the conically grooved friction plate.


Author(s):  
J. Sasiadek ◽  
C. K. Kwok

The most important problems encountered in power plants are related to cold start-up, hot start-up, daily and seasonal variation in load. These problems are specially critical for high power units above 525°C and 10.5 MN/m2. As a result of higher thermal capacity of the thicker components in larger power units, the temperature gradient and thermal stresses assumed much higher values. It is, therefore, particularly important during transient operation conditions to know the temperature distribution and thermal stresses of rotors. One of the most common concerns is how fast can a turbine be started without significant damage. If the turbine is loaded very rapidly, high temperature gradient and excessive thermal stresses can easily damage the machine. A concept was developed whereby an on-line computer was used to control the start-up and load variation operations of the turbine. The feasibility of such concept depends upon the knowledge of the instantaneous temperature distribution and thermal stresses of the turbine rotors. This paper presents a 2-D mathematical model of the transient temperature distribution as well as thermal stresses of the rotor. The mathematical model was simulated in the computer and ADI method was used for the solution of the governing equations. Discussions will be made of the procedure of coupling this mathematical model with on-line computer for optimum control of start-up and load variation schedule.


2004 ◽  
Vol 126 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Hakan Ertu¨rk ◽  
Ofodike A. Ezekoye ◽  
John R. Howell

The boundary condition design of a three-dimensional furnace that heats an object moving along a conveyor belt of an assembly line is considered. A furnace of this type can be used by the manufacturing industry for applications such as industrial baking, curing of paint, annealing or manufacturing through chemical deposition. The object that is to be heated moves along the furnace as it is heated following a specified temperature history. The spatial temperature distribution on the object is kept isothermal through the whole process. The temperature distribution of the heaters of the furnace should be changed as the object moves so that the specified temperature history can be satisfied. The design problem is transient where a series of inverse problems are solved. The process furnace considered is in the shape of a rectangular tunnel where the heaters are located on the top and the design object moves along the bottom. The inverse design approach is used for the solution, which is advantageous over a traditional trial-and-error solution where an iterative solution is required for every position as the object moves. The inverse formulation of the design problem is ill-posed and involves a set of Fredholm equations of the first kind. The use of advanced solvers that are able to regularize the resulting system is essential. These include the conjugate gradient method, the truncated singular value decomposition or Tikhonov regularization, rather than an ordinary solver, like Gauss-Seidel or Gauss elimination.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.


2021 ◽  
pp. 014459872199800
Author(s):  
Xiaolong Wang ◽  
Wenke Zhang ◽  
Qingqing Li ◽  
Zhenqiang Wei ◽  
Wenjun Lei ◽  
...  

Radiant floor cooling systems are increasingly used in practice. The temperature distribution on the floor surface and inside the floor structure, especially the minimum and average temperature of floor surface, determines the thermal performance of radiant floor systems. A good temperature distribution of the floor structure is very important to prevent occupant discomfort and avoid possible condensation in summer cooling. In this study, based on the heat transfer model of the single-layer homogeneous floor structure when there is no internal heat radiation in the room, this paper proposes a heat transfer model of single-layer floor radiant cooling systems when the room has internal heat radiation. Using separation variable methods, an analytical solution was developed to estimate temperature distribution of typical radiant floor cooling systems with internal heat radiation, which can be used to calculate the minimum temperature and the average temperature of typical composite floor structure. The analytical solution was validated by experiments. The values of the measured experiments are in a good agreement with the calculations. The absolute error between the calculated and the measured floor surface temperatures was within 0.45°C. The maximum relative error was within 2.31%. Prove that this model can be accepted. The proposed method can be utilized to calculate the cooling capacity of a typical multi-layer composite floor and will be developed in the future study for design of a typical radiant floor cooling system.


Author(s):  
Keiya Fujimoto ◽  
Hiroaki Hanafusa ◽  
Takuma Sato ◽  
Seiichiro HIGASHI

Abstract We have developed optical-interference contactless thermometry (OICT) imaging technique to visualize three-dimensional transient temperature distribution in 4H-SiC Schottky barrier diode (SBD) under operation. When a 1 ms forward pulse bias was applied, clear variation of optical interference fringes induced by self-heating and cooling were observed. Thermal diffusion and optical analysis revealed three-dimensional temperature distribution with high spatial (≤ 10 μm) and temporal (≤ 100 μs) resolutions. A hot spot that signals breakdown of the SBD was successfully captured as an anormal interference, which indicated a local heating to a temperature as high as 805 K at the time of failure.


Sign in / Sign up

Export Citation Format

Share Document