scholarly journals Temperature log simulations in high-enthalpy boreholes

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hong-Ping Cheng ◽  
Shian-Min Tsai ◽  
Chin-Chi Cheng

Vacuum freeze-drying technology is applicable to the process of high heat-sensitive products. Due to the long drying period and extremely low processing temperature and pressure, the uniform and efficiency of heat transfer fluid temperature in shelf are critical for product quality. Therefore, in this study, the commercial computer fluid dynamics (CFD) software, FLUENT, was utilized for three-dimension numerical simulation of the shelf vacuum freeze-drying process. The influences of different inlet and outlet positions for shelves on the uniformity of the flow rate and temperature were discussed. Moreover, it explored the impacts on the temperature gradient of shelves after heat exchange of different flow rates and low temperature materials. In order to reduce the developing time and optimize the design, the various secondary refrigerants in different plies of shelves were investigated. According to the effect of heat exchange between different flow rates and low temperature layer material shelves on the temperature gradient of shelves surface, the minimum temperature gradient was 20 L/min, and the maximum was 2.5 L/min.


1998 ◽  
Vol 35 (1) ◽  
pp. 107-109 ◽  
Author(s):  
G. Simeonides ◽  
L. Walpot ◽  
M. Netterfield ◽  
G. Tumino

1997 ◽  
Vol 119 (1) ◽  
pp. 61-67 ◽  
Author(s):  
J.-X. Chen ◽  
X. Gan ◽  
J. M. Owen

A superposed radial outflow of air is used to cool two disks that are rotating at equal and opposite speeds at rotational Reynolds numbers up to 1.2 × 106. One disk, which is heated up to 100°C, is instrumented with thermocouples and fluxmeters; the other disk, which is unheated, is made from transparent polycarbonate to allow the measurement of velocity using an LDA system. Measured Nusselt numbers and velocities are compared with computations made using an axisymmetric elliptic solver with a low-Reynolds-number k–ε turbulence model. Over the range of flow rates and rotational speeds tested, agreement between the computations and measurements is mainly good. As suggested by the Reynolds analogy, the Nusselt numbers for contrarotating disks increase strongly with rotational speed and weakly with flow rate; they are lower than the values obtained under equivalent conditions in a rotor–stator system.


Author(s):  
Vahid Madadi ◽  
Touraj Tavakoli ◽  
Amir Rahimi

AbstractThe energy and exergy performance of a parabolic dish collector is investigated experimentally and theoretically. The effect of receiver type, inlet temperature and mass flow rate of heat transfer fluid (HTF), receiver temperature, receiver aspect ratio and solar radiation are investigated. To evaluate the effect of the receiver aperture area on the system performance, three aperture diameters are considered. It is deduced that the fully opened receivers have the greatest exergy and thermal efficiency. The cylindrical receiver has greater energy and exergy efficiency than the conical one due to less exergy destruction. It is found that the highest exergy destruction is due to heat transfer between the sun and the receivers and counts for 35 % to 60 % of the total wasted exergy. For three selected receiver aperture diameters, the exergy efficiency is minimum for a specified HTF mass flow rate. High solar radiation allows the system to work at higher HTF inlet temperatures. To use this system in applications that need high temperatures, in cylindrical and conical receivers, the HTF mass flow rates lower than 0.05 and 0.09 kg/s are suggested, respectively. For applications that need higher amounts of energy content, higher HTF mass flow rates than the above mentioned values are recommended.


Author(s):  
AA Rostami ◽  
MR Hajaligol ◽  
P Li ◽  
S Rabiei ◽  
MS Rostami

AbstractThe total amounts of carbon monoxide (CO) and carbon dioxide (CO2) in the mainstream smoke of a burning cigarette during a steady draw were measured by a non-dispersive infrared (IR) technique for a variety of flow rates. The temperature profiles in the cigarette were also measured under the same flow conditions. The data were used in a diffusion model to estimate the concentrations of these gases downstream of the pyrolysis zone. The contribution of pyrolysis in the generation of these gases was calculated using a kinetic model. The remaining CO and CO2 are attributed to processes occurring in the combustion zone. The calculated mean concentrations of carbon oxides behind the pyrolysis zone are in reasonable agreement with the experimental data. The contributions of pyrolysis and combustion to the formation of CO were found to be approximately 1/3 and 2/3 respectively. The results show that the peak temperature rises with an increase in the mainstream flow rate in the limited range of 0 to 200 mL/min. As a result, the concentrations of carbon oxides behind the pyrolysis zone also increase with the flow rate and reach plateaus at higher flow rates.


Author(s):  
Shailesh N. Joshi ◽  
Danny J. Lohan ◽  
Ercan M. Dede

Abstract The heat transfer and fluid flow performance of a hybrid jet plus multipass microchannel heat sink in two-phase operation is evaluated for the cooling of a single large area, 3.61 cm2, heat source. The two-layer branching microchannel heat sink is evaluated using HFE-7100 as the coolant at three inlet volumetric flow rates of 150, 300, and 450 ml/min. The boiling performance is highest for the flow rate of 450 ml/min with the maximum heat flux value of 174 W/cm2. Critical heat flux (CHF) was observed at two of the tested flow rates, 150 and 300 ml/min, before reaching the maximum operating temperature for the serpentine heater. At 450 ml/min, the heater reached the maximum allowable temperature prior to observing CHF. The maximum pressure drop for the heat sink is 34.1 kPa at a heat flux of 164 W/cm2. Further, the peak heat transfer coefficient value of the heat sink is 28,700 W/m2 K at a heat flux value of 174 W/cm2 and a flow rate of 450 ml/min. Finally, a validated correlation of the single device cooler is presented that predicts heat transfer performance and can be utilized in the design of multidevice coolers.


Author(s):  
Ravi Arora ◽  
Anna Lee Tonkovich ◽  
Mike J. Lamont ◽  
Thomas Yuschak ◽  
Laura Silva

The two important considerations in the design of a heat exchanger are — the total heat transfer rate and the allowable pressure drop. The allowable pressure drop defines the maximum flow rate through a single microchannel and economics drives the design towards this flow rate. Typically the flow rate in the microchannel is in laminar flow regime (Re < 2000) due to smaller hydraulic diameter. The laminar flow heat transfer in a smooth microchannel is limited by the boundary layer thickness. Commonly the heat transfer rate is enhanced by passively disrupting the laminar boundary layer using protrusions or depressions in the channel walls. More often these methods are best applicable at small range of Reynolds number where the heat transfer rate enhancement is more than the pressure drop increase and break down as the flow rate is changed outside the range. The benefit of a flow disruption method can be reaped only if it provides higher heat transfer enhancement than the increase in the pressure drop at the working flow rates in the microchannel. A heat transfer efficient microchannel design has been developed using wall features that create stable disrupted flow and break the laminar boundary layer in a microchannel over a wide range of flow rates. The paper experimentally investigates the developed design for the heat transfer enhancement and pressure drop increase compared to a smooth wall microchannel. A simple microchannel device was designed and fabricated with and without wall features. The experiments with single gas phase fluid showed promising results with the developed wall feature design as the heat transfer rate increase was 20% to 80% more than the pressure drop increase in the laminar regime. The wall feature design was an important variable to affect the magnitude of performance enhancement in different flow regime. A general criterion was developed to judge the efficacy of wall feature design that can be used during a microchannel heat exchanger design.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Eric C. Okonkwo ◽  
Muhammad Abid ◽  
Tahir A. H. Ratlamwala ◽  
Serkan Abbasoglu ◽  
Mustafa Dagbasi

This study presents an experimental nanoparticle synthesis and the numerical analysis of a parabolic trough collector (PTC) operating with olive leaf synthesized TiO2/water nanofluid. The PTC is modeled after the LS-2 collector for various operating conditions. An analysis of the heat transfer and entropy generation in the PTC is carried out based on the first and second laws of thermodynamics for various parameters of nanoparticle volumetric concentration (0 ≤ φ ≤ 8%), mass flow rate (0.1 ≤ m˙ ≤ 1.1 kg/s), and inlet temperatures (350–450 K) under turbulent flow regime. The effect of these parameters is evaluated on the Nusselt number, thermal losses, heat convection coefficient, outlet temperature, pressure drop, entropy generation rate, and Bejan number. The results show that the values of the Nusselt number decrease with higher concentrations of the nanoparticles. Also, the addition of nanoparticles increases the heat convection coefficient of the nanofluid compared to water. The thermal efficiency of the system is improved with the use of the new nanofluid by 0.27% at flow rates of 0.1 kg/s. The entropy generation study shows that increasing the concentration of nanoparticles considerably decreases the rate of entropy generation in the system. It is also observed that increasing the volumetric concentration of nanoparticles at low mass flow rates has minimal effect on the rate of entropy generation. Finally, a correlation that provides a value of mass flow rate that minimizes the entropy generation rate is also presented for each values of inlet temperature and nanoparticle volumetric concentration.


Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the convective heat transfer performance of two fluids (water and FC-72) in a one side heated rectangular channel of 20mm in width and 2mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature was maintained at 30°C. The total length of the test channel was 113 mm, with a heated length of 25mm. The flow rate varied between 80 and 960 ml/min, and the heat flux was between 18 and 98 W/cm2. Single phase convection was the dominant heat transfer mechanism in the present water tests, and the performance was mainly controlled by flow rate. Contrarily, the heat flux was the major factor for the heat transfer performance in FC-72 as a result of the dominant boiling effect. At a fixed flow rate, the pin-finned surface yielded up to 30% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface. The convective heat transfer coefficient of FC-72 was greater than water at low flow rates (80∼160 ml/min) and heat fluxes between 18 and 35 W/cm2. However, the heat transfer performance of water was superior to FC-72 at high flow rates.


Sign in / Sign up

Export Citation Format

Share Document