On the Performance of a Two-Stage Vibration Isolation System Which has Geometrically Nonlinear Stiffness

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Zeqi Lu ◽  
Tiejun Yang ◽  
Michael J. Brennan ◽  
Xinhui Li ◽  
Zhigang Liu

Linear single-stage vibration isolation systems have a limitation on their performance, which can be overcome passively by using linear two-stage isolations systems. It has been demonstrated by several researchers that linear single-stage isolation systems can be improved upon by using nonlinear stiffness elements, especially for low-frequency vibrations. In this paper, an investigation is conducted into whether the same improvements can be made to a linear two-stage isolation system using the same methodology for both force and base excitation. The benefits of incorporating geometric stiffness nonlinearity in both upper and lower stages are studied. It is found that there are beneficial effects of using nonlinearity in the stiffness in both stages for both types of excitation. Further, it is found that this nonlinearity causes the transmissibility at the lower resonance frequency to bend to the right, but the transmissibility at the higher resonance frequency is not affected in the same way. Generally, it is found that a nonlinear two-stage system has superior isolation performance compared to that of a linear two-stage isolator.

2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
YuanYuan Fang

To improve the vibration reduction performance of two-stage vibration isolation systems for marine engines under wide frequency band and multifrequency excitation, the magnetorheological (MR) damper is introduced into the vibration isolation system and an optimal controller is designed. Taking the test results of MR damper dynamic characteristics as sample data, the forward and inverse models of the MR damper are identified by the least square method and neural network (NN) method respectively, and the identification results are applied to semiactive control of the two-stage isolation system. Based on the analysis of vibration source, a six-degree-of-freedom mechanical model of two-stage system based on the MR damper is established. The optimal controller taking the minimum force transmitted from the engine to base as the control objective is designed. The system model and numerical simulation analysis are established using MATLAB. The results show that the isolation effect of optimal control is better than that of passive vibration isolation in the whole frequency band. In addition, good control effect is achieved in the low-frequency resonance region which is most concerned in engineering, which is of great significance to further improve the vibration reduction performance of marine engines.


2019 ◽  
Vol 38 (2) ◽  
pp. 608-614 ◽  
Author(s):  
M Jurevicius ◽  
V Vekteris ◽  
V Turla ◽  
A Kilikevicius ◽  
G Viselga

In this study, the theoretical and experimental investigations of the dynamics of complex passive low-frequency vibration systems are described. It is shown that a complex system consisting of a vibrating platform, an optical table and a vibration isolation system of quasi-zero stiffness loaded by a certain mass may isolate low-frequency vibrations in a narrow frequency range only. In another case, the system does not isolate vibrations; it even operates as an amplifier. The frequencies that ensure the top efficiency of the vibration damping system of quasi-zero stiffness were established.


2017 ◽  
Vol 24 (18) ◽  
pp. 4247-4259 ◽  
Author(s):  
S M Mahdi Mofidian ◽  
Hamzeh Bardaweel

Undesired oscillations commonly encountered in engineering practice can be harmful to structures and machinery. Vibration isolation systems are used to attenuate undesired oscillations. Recently, there has been growing interest in nonlinear approaches towards vibration isolation systems design. This work is focused on investigating the effect of nonlinear cubic viscous damping in a vibration isolation system consisting of a magnetic spring with a positive nonlinear stiffness, and a mechanical oblique spring with geometric nonlinear negative stiffness. Dynamic model of the vibration isolation system is obtained and the harmonic balance method (HBM) is used to solve the governing dynamic equation. Additionally, fourth order Runge–Kutta numerical simulation is used to obtain displacement transmissibility of the system under investigation. Results obtained from numerical simulation are in good agreement with those obtained using HBM. Results show that introducing nonlinear damping improves the performance of the vibration isolation system. Nonlinear damping purposefully introduced into the described vibration isolation system appears to eliminate undesired frequency jump phenomena traditionally encountered in quasi-zero-stiffness vibration isolation systems. Compared to its rival linear vibration isolation system, the described nonlinear system transmits less vibrations around resonant peak. At lower frequencies, both nonlinear and linear isolation systems show comparable transmissibility characteristics.


2020 ◽  
Author(s):  
Mindaugas Jurevicius ◽  
Gintas Viselga ◽  
Vytautas Turla ◽  
Eugenijus Jurkonis ◽  
Ina Tetsman

Abstract In the paper, an establishment of dynamic characteristics of tabletops of the newly-developed optical tables is being discussed upon. Low-frequency vibration isolation systems are reviewed. Theoretical and experimental tests have been performed. Dynamic models of an optical table on a vibrating platform at different excitations have been developed, the dynamic displacement and the resonance frequencies of the system have been established and vibration transmissibility curves have been presented. The obtained dynamic characteristics of the mechanical passive low-frequency vibration isolation system show that such a system is able to isolate the vibrations effectively. The results of the performed experimental tests confirm the data of the theoretical research.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2016 ◽  
Vol 87 (1) ◽  
pp. 633-646 ◽  
Author(s):  
Xinlong Wang ◽  
Jiaxi Zhou ◽  
Daolin Xu ◽  
Huajiang Ouyang ◽  
Yong Duan

2012 ◽  
Vol 30 (6) ◽  
pp. 063201 ◽  
Author(s):  
Katsuya Iwaya ◽  
Ryota Shimizu ◽  
Akira Teramura ◽  
Seiji Sasaki ◽  
Toru Itagaki ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 316-320
Author(s):  
Xiang Jun Kong ◽  
Er Ming Song ◽  
Chang Zheng Chen

Isolation system of the heat water pumps can be simplified as a double sources exciting and double output double-deck vibration isolation system model, expressions of transmitted power flow and vibration speed to the basement are deduced based on the double sources exciting and double output double-deck vibration isolation system electric-force(E-F) analog picture, the curves of power flow and vibration speed transmitted to basement how the upper deck vibration isolation and intermediate mass effect are drawn by using mat lab program. The results show that the adjusting the upper deck vibration isolation stiffness parameters has little effect on the amplitude of vibration power flow, increasing intermediate mass can move first peak to the low frequency, increasing intermediate mass can obviously reduce t transmitted power flow and transmitted vibration speed amplitude to the basement.


Sign in / Sign up

Export Citation Format

Share Document