Bioprinting Technology: A Current State-of-the-Art Review

Author(s):  
Amer B. Dababneh ◽  
Ibrahim T. Ozbolat

Bioprinting is an emerging technology for constructing and fabricating artificial tissue and organ constructs. This technology surpasses the traditional scaffold fabrication approach in tissue engineering (TE). Currently, there is a plethora of research being done on bioprinting technology and its potential as a future source for implants and full organ transplantation. This review paper overviews the current state of the art in bioprinting technology, describing the broad range of bioprinters and bioink used in preclinical studies. Distinctions between laser-, extrusion-, and inkjet-based bioprinting technologies along with appropriate and recommended bioinks are discussed. In addition, the current state of the art in bioprinter technology is reviewed with a focus on the commercial point of view. Current challenges and limitations are highlighted, and future directions for next-generation bioprinting technology are also presented.

Informatics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 37
Author(s):  
Loraine Franke ◽  
Daniel Haehn

Modern scientific visualization is web-based and uses emerging technology such as WebGL (Web Graphics Library) and WebGPU for three-dimensional computer graphics and WebXR for augmented and virtual reality devices. These technologies, paired with the accessibility of websites, potentially offer a user experience beyond traditional standalone visualization systems. We review the state-of-the-art of web-based scientific visualization and present an overview of existing methods categorized by application domain. As part of this analysis, we introduce the Scientific Visualization Future Readiness Score (SciVis FRS) to rank visualizations for a technology-driven disruptive tomorrow. We then summarize challenges, current state of the publication trend, future directions, and opportunities for this exciting research field.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 885
Author(s):  
Christos Vlachakis ◽  
Marcus Perry ◽  
Lorena Biondi

Alkali-activated materials are an emerging technology that can serve as an alternative solution to ordinary Portland cement. Due to their alkaline nature, these materials are inherently more electrically conductive than ordinary Portland cement, and have therefore seen numerous applications as sensors and self-sensing materials. This review outlines the current state-of-the-art in strain, temperature and moisture sensors that have been developed using alkali activated materials. Sensor fabrication methods, electrical conductivity mechanisms, and comparisons with self-sensing ordinary Portland cements are all outlined to highlight best practice and propose future directions for research.


2018 ◽  
Vol 108 (05) ◽  
pp. 319-324
Author(s):  
I. Bogdanov ◽  
A. Nuffer ◽  
A. Sauer

Der vorliegende Beitrag behandelt den Themenkomplex Ressourcen-effizienz und digitale Transformation im verarbeitenden Gewerbe sowie die dabei entstehenden Wechselwirkungen. Neben dem aktuellen Stand der Technik werden die im Rahmen einer aktuellen Studie durchgeführte Fallbeispielanalyse und die entwickelte Methodik zur Ermittlung der Ressourceneffizienzpotenziale vorgestellt. Diese Potenziale und die eingesetzten digitalen Maßnahmen sind zentrale Bausteine des vorliegenden Beitrags.   This article deals with the topic complex of resource efficiency and digital transformation in the manufacturing sector as well as the resulting interactions. In addition to the current state of the art and perspectives, the case study analysis carried out as part of a current study, as well as the developed method for establishing the resource efficiency potentials will be presented. The resultant potential and the digital measures are central components of this article.


2013 ◽  
Vol 65 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Alexander Koshkaryev ◽  
Rupa Sawant ◽  
Madhura Deshpande ◽  
Vladimir Torchilin

2020 ◽  
Vol 201 (5-6) ◽  
pp. 772-802 ◽  
Author(s):  
A. T. Jones ◽  
C. P. Scheller ◽  
J. R. Prance ◽  
Y. B. Kalyoncu ◽  
D. M. Zumbühl ◽  
...  

AbstractHere we review recent progress in cooling micro-/nanoelectronic devices significantly below 10 mK. A number of groups worldwide are working to produce sub-millikelvin on-chip electron temperatures, motivated by the possibility of observing new physical effects and improving the performance of quantum technologies, sensors and metrological standards. The challenge is a longstanding one, with the lowest reported on-chip electron temperature having remained around 4 mK for more than 15 years. This is despite the fact that microkelvin temperatures have been accessible in bulk materials since the mid-twentieth century. In this review, we describe progress made in the last 5 years using new cooling techniques. Developments have been driven by improvements in the understanding of nanoscale physics, material properties and heat flow in electronic devices at ultralow temperatures and have involved collaboration between universities and institutes, physicists and engineers. We hope that this review will serve as a summary of the current state of the art and provide a roadmap for future developments. We focus on techniques that have shown, in experiment, the potential to reach sub-millikelvin electron temperatures. In particular, we focus on on-chip demagnetisation refrigeration. Multiple groups have used this technique to reach temperatures around 1 mK, with a current lowest temperature below 0.5 mK.


Author(s):  
Giulia Ischia ◽  
Luca Fiori

Abstract Hydrothermal carbonization (HTC) is an emerging path to give a new life to organic waste and residual biomass. Fulfilling the principles of the circular economy, through HTC “unpleasant” organics can be transformed into useful materials and possibly energy carriers. The potential applications of HTC are tremendous and the recent literature is full of investigations. In this context, models capable to predict, simulate and optimize the HTC process, reactors, and plants are engineering tools that can significantly shift HTC research towards innovation by boosting the development of novel enterprises based on HTC technology. This review paper addresses such key-issue: where do we stand regarding the development of these tools? The literature presents many and simplified models to describe the reaction kinetics, some dealing with the process simulation, while few focused on the heart of an HTC system, the reactor. Statistical investigations and some life cycle assessment analyses also appear in the current state of the art. This work examines and analyzes these predicting tools, highlighting their potentialities and limits. Overall, the current models suffer from many aspects, from the lack of data to the intrinsic complexity of HTC reactions and HTC systems. Therefore, the emphasis is given to what is still necessary to make the HTC process duly simulated and therefore implementable on an industrial scale with sufficient predictive margins. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document