Construction of Pump-Turbine Characteristics at Any Specific Speed by Domain-Partitioned Transformation

2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Wei Zeng ◽  
Jiandong Yang ◽  
Yongguang Cheng

Pump-turbine characteristics are important for designing pumped-storage plants and indispensable for simulating hydraulic transients, but are often not available in the preliminary design stage. Therefore, constructing a set of pump-turbine characteristics is necessary, when no suitable characteristics at the same specific speed can be used for substitution. In this paper, we propose a new method for pump-turbine characterization at any specific speed using a database of 25 available sets of pump-turbine characteristics. The intersecting curves, defined by the intersections of the characteristic curves with a coordinate axis, are formularized to prepare for the characterization primarily. Next is an introduction of a transformation method for characteristic curves base on domain partition, through which the curves are transformed into eight characteristic surface meshes in eight separate domains. Then, we present the construction procedures in each domain, which include merging the transformed surface meshes for all the sets of collected characteristic curves into a cube mesh, constructing a super surface by interpolation to construct the regular characteristic surface meshes for an arbitrary specific speed, and transforming the constructed meshes reversely to get the conventional characteristic curves. This method is verified by comparing them to measured characteristic curves with reasonable accuracies.

Author(s):  
Wei Zeng ◽  
Jiandong Yang ◽  
Yongguang Cheng

Pump-turbine characteristic curves are the most important boundary condition in the hydraulic transient simulation of a pumped-storage hydropower station. Conventional representation of them, however, has serious defects, For instance, the “S” and “hump” shapes, composed of multiple values and steep twists, lead to the difficulty in interpolation between known guide-vane opening curves, which is necessary in hydraulic transient simulations. Here, a new transformation method was figured out to settle this problem thoroughly and to improve the accuracy of interpolation between the constant opening curves. Prior to the transformation, the characteristic curves are partitioned into eight domains. Curves of each domain were transformed through different formulae that fit the curves well. Eight characteristic surfaces in the 3-D space can be obtained by adding the guide vane opening as the coordinate axis. The theoretical method has been validated by the excellent agreements achieved by comparing the curves interpolated on the characteristic surfaces with the measured data.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012021
Author(s):  
Baonan Liu ◽  
Jianzhong Zhou

Abstract The calculation of transient process is the basis of the design and construction of pumped storage power plant, which directly affects operation stability of pumped storage units. However, for satisfying the design of uniform and smooth flow in both directions, the complete characteristic curves of pumped turbine show a significant S feature, which brings difficulties to the interpolation calculation in the transient process as there are crossover and overlap phenomenon in pump and turbine working conditions. In this paper, a transformation method for complete characteristic curves based on logarithmic curve projection and improved backpropagation neural network is presented to solve the above problem. Furthermore, the feasibility and accuracy of the method are verified through the comparison of load rejection condition with on-site measurement, the results show that the proposed method overcomes the multi-value problem that exists in the original curve, in especial makes the small opening region well expressed. The simulation based on the transformed curve reaches a high similarity of transient process with the field test, both in the trend and extreme values, which provides great convenience for the calculation of transient process.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Wei Zeng ◽  
Jiandong Yang ◽  
Wencheng Guo

Pump-turbine characteristics greatly affect the operational stability of pumped-storage plants. In particular, the S-shaped region of the characteristic curves leads to severe instability during runaway conditions with servomotor failure. Thus, this paper aims to investigate the runaway stability criterion by considering all of the important effects in the hydromechanical system. The criterion also helps to judge the S-characteristics of pump-turbines and can provide a guide for plant design and turbine optimization. First, the pump-turbine characteristic curves are locally linearized to obtain formulae for the relative changes of discharge and torque, which depend on the relative changes of rotational speed and water head. Control theory is then applied to analyze the high-order system, by importing the transfer function of the conduits in the elastic mode. Two different kinds of oscillation are found, associated with water inertia and elasticity, based on the established theoretical mathematical model. New stability criteria for the inertia wave in both rigid and elastic modes are developed and compared. The comparison reveals the effect of the water elasticity on runaway instability, which has often been neglected in the previous work. Other effects, such as friction loss and the timescales of water flow and machinery, are also discussed. Furthermore, the elastic wave, which often has a higher frequency than the inertia wave, is also studied. The stability criterion is deduced with analyses of its effects. Based on the stability criteria for the inertia wave and elastic wave, the unstable regions for two waves of the S-shaped curves are plotted. The results are applied to explain the development from inertia wave to elastic wave during transient behavior at runaway conditions. Model tests of runaway conditions were conducted on a model pumped storage station and the experimental data show good agreement with the theoretical analyses regarding the instability of the inertia wave. Further analyses and validations are made based on transient simulations. The simulation software topsys, which uses the method of characteristics (MOC) and a unit boundary represented by a spatial pump-turbine characteristic surface, was applied to analyze the elastic wave. This also supports the conclusions of the theoretical research.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 395-405
Author(s):  
Arsalan Alavi ◽  
Elena Mele ◽  
Reza Rahgozar ◽  
Ehsan Noroozinejad Farsangi ◽  
Izuru Takewaki ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4732
Author(s):  
Jing Yang ◽  
Yue Lv ◽  
Dianhai Liu ◽  
Zhengwei Wang

Pumped-storage power stations play a regulatory role in the power grid through frequent transition processes. The pressure pulsation in the draft tube of the pump-turbine under transient processes is important for safe operation, which is more intense than that in the steady-state condition. However, there is no effective method to obtain the exact pressure in the draft tube in the transient flow field. In this paper, the pressure in the draft tube of a pump-turbine under steady-state and transient conditions are studied by means of CFD. The reliability of the simulation method is verified by comparing the real pressure pulsation data with the test results. Due to the distribution of the pressure pulsation in the draft tube being complex and uneven, the location of the pressure monitoring points directly affects the accurate judgement of cavitation. Eight monitoring surfaces were set in the straight cone of the draft tube and nine monitoring points were set on each monitoring surface to analyze the pressure differences on the wall and inside the center of the draft tube. The relationships between the pressure pulsation value inside the center of the draft tube and on the wall are studied. The “critical” wall pressure pulsation value when cavitation occurs is obtained. This study provides references for judging cavitation occurrences by using the wall pressure pulsation value in practical engineering.


Author(s):  
Shiyong Yang ◽  
Kikuo Nezu

Abstract An inverse finite element (FE) algorithm is proposed for sheet forming process simulation. With the inverse finite element analysis (FEA) program developed, a new method for concurrent engineering (CE) design for sheet metal forming product and process is proposed. After the product geometry is defined by using parametric patches, the input models for process simulation can be created without the necessity to define the initial blank and the geometry of tools, thus simplifying the design process and facilitating the designer to look into the formability and quality of the product being designed at preliminary design stage. With resort to a commercially available software, P3/PATRAN, arbitrarily three-dimensional product can be designed for manufacturability for sheet forming process by following the procedures given.


1999 ◽  
Vol 36 (03) ◽  
pp. 171-174
Author(s):  
Hüseyin Yilmaz ◽  
Abdi Kükner

It is well known that stability is the most important safety requirement for ships. One should have some information on ship stability at the preliminary design stage in order to reduce risk. Initial stability of ships is an important criterion and can be closely evaluated in terms of form parameters and vertical center of gravity. In this study, using some sample ship data, approximate formulations are derived by means of regression analysis for the calculations expressed in terms of ship preliminary design parameters that can easily provide approximate GM calculations. Thus designers can be provided with ship stability at the preliminary design stage, and also a set of appropriate design parameters for improving vessel stability can easily be determined.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


Sign in / Sign up

Export Citation Format

Share Document