Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform

2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Fugui Xie ◽  
Xin-Jun Liu

In this paper, a novel parallel kinematic mechanism (PKM) with Schönflies motion has been proposed under the guidance of a graphical type synthesis method. This PKM is composed of four identical arms and a single platform and has high rotational capability. The single-platform structure used in the proposed PKM can reduce structural complexity, increase dynamic response. In addition, the composite parallelogram structure in each arm brings in better limb stiffness. Based on the proposed concept, optimal design is carried out to make the PKM realize its high rotational potential. In this process, an input transmission index (ITI) and an output transmission index (OTI) (the two indices can be used to numerically evaluate motion and force transmission performance of PKMs, respectively) are taken as the performance evaluation criteria. On this basis, some other indices are defined and the corresponding performance atlases are also plotted to investigate the potential workspace. Consequently, dimensional parameters of the discussed PKM are derived on the precondition that the rotational capability should reach at least ±90 deg, and the workspace has also been identified. Based on these foundations, a parallel robot X4 has been developed which can realize high-speed pick-and-place manipulation in industrial lines.

2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Zhaokun Zhang ◽  
Zhufeng Shao ◽  
Fazhong Peng ◽  
Haisheng Li ◽  
Liping Wang

Abstract Cable-driven parallel robots (CDPRs) have great prospects for high-speed applications because of their nature of low inertia and good dynamics. Existing high-speed CDPRs mainly adopt redundant cables to keep positive cable tensions. Redundant cables lead to complex and costly structure, and are likely to cause interference. In this study, a non-redundant CDPR for high-speed translational motions is designed with passive springs and parallel cables. First, the configuration of the CDPR is illustrated, and its kinematics and dynamics are studied. Then, the workspace of the CDPR is discussed in detail. The condition of positive cable tensions is proved. The influence of the springs’ layout on the workspace is analyzed. A method for determining the regular cylindrical operation workspace is proposed. Furthermore, the optimal design method for high-speed CDPRs with passive springs is developed. Performance indices for evaluating the force transmission are defined based on the matrix orthogonal degree. The geometric parameters are optimized based on the workspace and force transmission indices. The stiffness coefficient of the spring is determined based on the acceleration and cable tension requirements. Finally, the proposed CDPR and the traditional CDPR with redundant cables are compared through simulation. The results show that the designed CDPR possesses advantages in energy consumption and simple structure compared to CDPR with redundant cables.


2009 ◽  
Vol 69-70 ◽  
pp. 580-584 ◽  
Author(s):  
D.F. Zhang ◽  
Feng Gao

A novel 6-(P-2P-S) parallel robot is put forward. With the characters of some movement decoupling on the orthogonal pose, the robot can be used as the macro manipulator of the macro/micro dual driven robots. The macro manipulator as a high-precision positioning device, it is significant for the practical application and drive train design to research statics. First, the force Jacobian matrix is deduced, which is related to the orientation parameters. Then based on the Jacobian matrix singular value decomposed characteristic, the static force transmission evaluation indicators Kf and Km are defined. Finally, considering structure constraints and parameters, the distribution of evaluation indicators in the orientation workspace is drawn, which provide the theoretical base for the design and applications of the robot. Because of the characters of simple structure, high carrying capacity, less motion inertia, good manufacturability, the 6-(P-2P-S) parallel macro manipulator has been designed.


Author(s):  
A. F. Chernyavsky ◽  
A. A. Kolyada ◽  
S. Yu. Protasenya

The article is devoted to the problem of creation of high-speed neural networks (NN) for calculation of interval-index characteristics of a minimally redundant modular code. The functional base of the proposed solution is an advanced class of neural networks of a final ring. These neural networks perform position-modular code transformations of scalable numbers using a modified reduction technology. A developed neural network has a uniform parallel structure, easy to implement and requires the time expenditures of the order (3[log2b]+ [log2k]+6tsum  close to the lower theoretical estimate. Here b and k is the average bit capacity and the number of modules respectively; t sum is the duration of the two-place operation of adding integers. The refusal from a normalization of the numbers of the modular code leads to a reduction of the required set of NN of the finite ring on the (k – 1) component. At the same time, the abnormal configuration of minimally redundant modular coding requires an average k-fold increase in the interval index module (relative to the rest of the bases of the modular number system). It leads to an adequate increase in hardware expenses on this module. Besides, the transition from normalized to unregulated coding reduces the level of homogeneity of the structure of the NN for calculating intervalindex characteristics. The possibility of reducing the structural complexity of the proposed NN by using abnormal intervalindex characteristics is investigated.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
S.V. Palochkin ◽  
Y.V. Sinitsyna ◽  
K.G. Erastova

The increased accuracy in high-speed positioning of the parallel robot effector in comparison with that of serial robots with a sequential structure is often the main reason for their use in various modern industries, such as the manufacture of printed circuit boards for microelectronics. However, despite the higher theoretical positioning accuracy, due to the kinematic structure of the parallel robot, in practice this characteristic largely depends on the accuracy of manufacturing individual elements of this mechanism, the most important of which are the gearboxes of the drives of its input pairs. A solution to the urgent problem of determining the effect of the manufacturing accuracy of planetary pinion gearboxes included in the drive of a five-link parallel robot on the positioning accuracy of its output link is proposed. A specific relationship has been determined between the grade of accuracy number of the gear part dimensions and the robot positioning accuracy. The unevenness of the positioning accuracy along the coordinate axes of its working area is revealed. It was found that near the area of certain robot positions the accuracy of its positioning drops sharply.


Author(s):  
Coralie Germain ◽  
Se´bastien Briot ◽  
Victor Glazunov ◽  
Ste´phane Caro ◽  
Philippe Wenger

This paper presents a novel two-degree-of-freedom (DOF) translational parallel robot for high-speed applications named the IRSBot-2 (acronym for IRCCyN Spatial Robot with 2 DOF). Unlike most two-DOF robots dedicated to planar translational motions, this robot has two spatial kinematic chains which confers a very good intrinsic stiffness. First, the robot architecture is described. Then, its actuation and constraint singularities are analyzed. Finally, the IRSBot-2 is compared to its two-DOF counterparts based on elastostatic performances.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Qing Li

Due to the demands from the robotic industry, robot structures have evolved from serial to parallel. The control of parallel robots for high performance and high speed tasks has always been a challenge to control engineers. Following traditional control engineering approaches, it is possible to design advanced algorithms for parallel robot control. These approaches, however, may encounter problems such as heavy computational load and modeling errors, to name it a few. To avoid heavy computation, simplified dynamic models can be obtained by applying approximation techniques, nevertheless, performance accuracy will suffer due to modeling errors. This paper suggests applying an integrated design and control approach, i.e., the Design For Control (DFC) approach, to handle this problem. The underlying idea of the DFC approach can be illustrated as follows: Intuitively, a simple control algorithm can control a structure with a simple dynamic model quite well. Therefore, no matter how sophisticate a desired motion task is, if the mechanical structure is designed such that it results in a simple dynamic model, then, to design a controller for this system will not be a difficult issue. As such, complicated control design can be avoided, on-line computation load can be reduced and better control performance can be achieved. Through out the discussion in the paper, a 2 DOF parallel robot is redesigned based on the DFC concept in order to obtain a simpler dynamic model based on a mass-balancing method. Then a simple PD controller can drive the robot to achieve accurate point-to-point tracking tasks. Theoretical analysis has proven that the simple PD control can guarantee a stable system. Experimental results have successfully demonstrated the effectiveness of this integrated design and control approach.


Sign in / Sign up

Export Citation Format

Share Document