Magnetic Bearing Using Rotation Magnetized Direction Configuration

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
K. P. Lijesh ◽  
Harish Hirani

Passive magnetic bearing (PMB), made of high remanence rare earth permanent magnets, is brittle in nature; therefore, precautions must be taken to reduce the chances of vibration transmitting to the permanent magnets. In the present work, a rotation magnetized direction (RMD) structure made of aluminum ring and square shaped magnetic pieces has been proposed. A comparative study of load carrying capacities of sector magnets and square magnets has been presented. Three-dimensional (3D) Coulombian model was solved to estimate the load carrying capacity. Theoretical and experimental studies on the load carrying capacities of full ring magnet (more prone to cracking) and the proposed structure have been presented to prove the superiority of the proposed structure. In addition to load capacity, comparison between amplitudes of vibration at different frequencies, orbit plots, and time taken for breakage of the magnets at the resonance frequency has been presented.

Author(s):  
H Hirani ◽  
P Samanta

Survey of patents on bearings indicates the maturity of hydrodynamic and rapid development of magnetic bearings. Active magnetic bearings are costlier compared with permanent magnetic bearings. To understand the performance characteristics of permanent magnetic bearings, an experimental setup has been developed. Experimental studies on radial permanent magnetic bearings demonstrated the drawbacks, such as high axial thrust and low load capacity. This has led the authors to hybridize the permanent magnet with hydrodynamic technology and to explore the possibility of achieving the low starting torque of a permanent magnetic bearing and the medium to high load carrying capacity of a hydrodynamic bearing in a single bearing arrangement. Simulation is carried out in order to reduce axial force-effect and enhance the radial force supported by the permanent magnetic bearing. Results of simulation on permanent magnetic bearing have been compared with that of published research papers. Finally an algorithm has been developed to investigate the coupling of forces generated by permanent magnets and hydrodynamic actions. Results of load sharing have been reported. The experimentally measured displacements of the shaft running at 500, 2000, and 3000 r/min have been plotted. The effect of hydrodynamics on shaft orbit has been illustrated.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
C. I. Papadopoulos ◽  
E. E. Efstathiou ◽  
P. G. Nikolakopoulos ◽  
L. Kaiktsis

This paper presents an optimization study of the geometry of three-dimensional micro-thrust bearings in a wide range of convergence ratios. The optimization goal is the maximization of the bearing load carrying capacity. The bearings are modeled as micro-channels, consisting of a smooth moving wall (rotor), and a stationary wall (stator) with partial periodic rectangular texturing. The flow field is calculated from the numerical solution of the Navier-Stokes equations for incompressible isothermal flow; processing of the results yields the bearing load capacity and friction coefficient. The geometry of the textured channel is defined parametrically for several width-to-length ratios. Optimal texturing geometries are obtained by utilizing an optimization tool based on genetic algorithms, which is coupled to the CFD code. Here, the design variables define the bearing geometry and convergence ratio. To minimize the computational cost, a multi-objective approach is proposed, consisting in the simultaneous maximization of the load carrying capacity and minimization of the bearing convergence ratio. The optimal solutions, identified based on the concept of Pareto dominance, are equivalent to those of single-objective optimization problems for different convergence ratio values. The present results demonstrate that the characteristics of the optimal texturing patterns depend strongly on both the convergence ratio and the width-to-length ratio. Further, the optimal load carrying capacity increases at increasing convergence ratio, up to an optimal value, identified by the optimization procedure. Finally, proper surface texturing provides substantial load carrying capacity even for parallel or slightly diverging bearings. Based on the present results, we propose simple formulas for the design of textured micro-thrust bearings.


Author(s):  
KP Lijesh ◽  
Mrityunjay Doddamani ◽  
SI Bekinal ◽  
SM Muzakkir

Modeling, design, and optimization for performances of passive magnetic bearings (PMBs) are indispensable, as they deliver lubrication free, friction less, zero wear, and maintenance-free operations. However, single-layer PMBs has lower load-carrying capacity and stiffness necessitating development of stacked structure PMBs for maximum load and stiffness. Present work is focused on multi-objective optimization of radial PMBs to achieve maximum load-carrying capacity and stiffness in a given volume. Three-dimensional Coulombian equations are utilized for estimating load and stiffness of stacked radial PMBs. Constraints, constants, and bounds for the optimization are extracted from the available literature. Optimization is performed for force and stiffness maximization in the obtained bounds with three PMB configurations, namely (i) mono-layer, (ii) conventional (back to back), and (iii) rotational magnetized direction. The optimum dimensions required for achieving maximum load without compromising stiffness for all three configurations is investigated. For designers ease, equations to estimate the optimized values of load, stiffness, and stacked PMB variables in terms of single-layer PMB are proposed. Finally, the effectiveness of the proposed method is demonstrated by considering the PMB dimensions from the available literature.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


In this paper, 1 group of plain concrete square columns 150×150×600 mm and 11 groups of concrete columns reinforced with glass fiber reinforced polymer (GFRP) were cast and tested, each group contains of 3 specimens. These experiments investigated effect of the main reinforcement ratio, stirrup spacing and contribution of longitudinal GFRP bars on the load carrying capacity of GFRP reinforced concrete (RC) columns. Based on the experiment results, the relationship between load-capacity and reinforcement ratio and the plot of contribution of longitudinal GFRP bars to load-capacity versus the reinforcement ratio were built and analyzed. By increasing the reinforcement ratio from 0.36% to 3.24%, the average ultimate strain in columns at maximum load increases from 2.64% to 75.6% and the load-carrying capacity of GFRP RC columns increases from 3.4% to 25.7% in comparison with the average values of plain concrete columns. Within the investigated range of reinforcement ratio, the longitudinal GFRP bars contributed about 0.72%-6.71% of the ultimate load-carrying capacity of the GFRP RC columns. Meanwhile, with the same configuration of reinforcement, contribution of GFRP bars to load-carrying capacity of GFRP RC columns decreases when increasing the concrete strength. The influence of tie spacing on load-carrying capacity of reinforced columns was also taken into consideration. Additionally, experimental results allow us to propose some modifications on the existing formulas to determine the bearing capacity of the GFRP RC column according to the compressive strength of concrete and GFRP bars.


2020 ◽  
Author(s):  
Nam Su Kim ◽  
Kyongho Kim ◽  
Sinhyok Jong

Abstract This paper aims to investigate the contact characteristics and static load carrying capacity of planetary roller screw mechanism (PRSM). Compared to the ball screw mechanism, the advantages of the PRSM are high stiffness, high load capacity, long travel life and compact structure, etc., since the PRSM possesses more contact points than ball screws in a comparable size. The actuated load is carried through the threaded surface contacts of the screw, the rollers and the nut and the contact characteristics of these components are very important for studying the wear, transmission accuracy and efficiency of a PRSM. Prior work has neglected to take a fundamental approach towards understanding the elastic-plastic contact characteristics of threaded surfaces under high loads and it is closely related to the static load carrying capacity of PRSM. Accordingly, in this paper, the contact characteristics of PRSM under the different working loads are modeled based on Hertz contact theory and the calculation formulas between normal force of thread turns and the elastic-plastic contact stress and deformation are derived. Then, it goes further to derive a calculation method of static load carrying capacity of PRSM based on simplified model of static load distribution. Finally, a verification model is developed by finite element method (FEM) to perform contact stress and strain analysis of PRSM. Besides, through the comparison of the results between the theory model and ANSYS Workbench finite element model verify the reliability of the theory.


Sign in / Sign up

Export Citation Format

Share Document